DERIVATIVE SEAKEEPING QUANTITIES

THE PRINCIPAL SEAKEEPING QUANTITY FROM
A SEAKEEPING ANALYSIS OF A FLOATING BODY
AT ZERO OR FORWARD SPEED IS THE

RESPONSE AMPLITUDE OPERATOR / RAO

• RAO =
$$\frac{\pm_{\dot{0}}(\omega)}{A}$$
, $\dot{0} = 1, 2, 3$

$$= \frac{\pm i(\omega)}{A/L}, \quad j = 4,5,6$$

WHERE L IS A CHARACTERISTIC LENGTH. THE
RAO IS A COMPLEX QUANTITY WITH PHASE PEFINED
RELATIVE TO THE AMBIENT WAVE ELEVATION AT
THE ORIGIN OF THE COORDINATESTSTEM

LT FOLLOWS THAT THE ONLY SEAKEEPING QUANTITY WITH RAD = 1 18 5 (t).

A PARTIAL LIST OF DERIVATIVE SEAKEEPING QUANTITIES OF INTEREST IN PRACTICE IS

- FREE-SURFACE ELEVATION. NEEDED

 TO ESTIMATE THE CLEARANCE UNDER

 THE DECK OF OFFSHORE PLATFORMS
- POINTS. E.G. NEEDED TO ESTIMATE THE
 MOTION PROPERTIES OF CONTAIRIZED

 CARGO
- RELATIVE WAVE ELEVATION AND VELOCITY NEAR THE BOW OF A SHIP.

 NEEDED TO ESTIMATE THE OCCURENCE AND SEVERITY OF SLAMMING.
- LOCAL AND GLOBAL STRUCTURAL LOADS

 NEEDED FOR THE VESSEL STRUCTURAL

 DESIGN

ACCORDING TO LINEAR THEORY, ALL DERIVATIVE QUANTITIES WHICH ARE LINEAR SUPERPOSITIONS OF OTHER QUANTITIES, TAKE THE FORM

$$Z(t) = \mathbb{R} \{ Z(\omega) e^{i\omega t} \}, \quad \mathbb{R} A0 = \frac{Z(\omega)}{A}.$$

EXAMPLE 1

· ACCELERATION RAD AT THE BOW OF A SHIP

THE VERTICAL DISPLACEMENT OF POINT A DUE TO THE VESSEL HEAVE & PITCH MOTIONS IS

$$\xi_{A}(t) = \xi_{3}(t) - \chi_{A} \xi_{5}(t)$$

$$\frac{d^{2}\xi_{A}(t)}{dt^{2}} = \xi_{3}(t) - \chi_{A} \xi_{5}(t)$$

$$= \Re \left\{ -\omega^{2} \left[\pm_{3} - \chi_{A} \pm_{5} \right] e^{i\omega t} \right\}$$

SO THE CORRESPONDING RAO IN WAVES OF AMPLITUDE A IS!

$$RAO = \frac{-\omega^2(\mathbb{E}_3 - \chi_A \mathbb{E}_5)}{A}$$
$$= -\omega^2(RAO_3 - \chi_A RAO_5)_{\circ} -$$

SO THE RAO OF THE VERTICAL ACCELERATION AT THE BOW IS A LINEAR COMBINATION OF THE HEAVE AND PITCH RAO'S . _

EXAMPLE 2

HYDRODYNAMIC PRESSURE DISTURBANCE AT
A FIXED POINT ON A SHIP HULL OSCILLATING
IN HEAVE & PITCH IN WAVES

THE LINEAR HYDRODYNAMIC PRESSURE AT A POINT A LOCATED AT X_A RECATIVE TO THE SHIP FRAME IS:

WHERE

$$P_{A} = -P \left\{ \left(i\omega - U \frac{\partial}{\partial x} \right) \left(\varphi_{3} + \varphi_{5} \right) + \frac{\partial}{\partial x} \left(i\omega - U \frac{\partial}{\partial x} \right) \left(\varphi_{I} + \varphi_{0} \right) + \frac{\partial}{\partial x} \left(\frac{\partial}{\partial x} - x \frac{\partial}{\partial x} \right) \right\}$$

$$Q \left(\frac{\partial}{\partial x} - x \frac{\partial}{\partial x} \right) \left(\frac{\partial}{\partial x} + \varphi_{0} \right) + \frac{\partial}{\partial x} \left(\frac{\partial}{\partial x} - x \frac{\partial}{\partial x} \right) \left(\frac{\partial}{\partial x} + \varphi_{0} \right) + \frac{\partial}{\partial x} \left(\frac{\partial}{\partial x} - x \frac{\partial}{\partial x} \right) \left(\frac{\partial}{\partial x} + \varphi_{0} \right) + \frac{\partial}{\partial x} \left(\frac{\partial}{\partial x} - x \frac{\partial}{\partial x} \right) \left(\frac{\partial}{\partial x} + \varphi_{0} \right) + \frac{\partial}{\partial x} \left(\frac{\partial}{\partial x} - x \frac{\partial}{\partial x} \right) \left(\frac{\partial}{\partial x} + \varphi_{0} \right) + \frac{\partial}{\partial x} \left(\frac{\partial}{\partial x} - x \frac{\partial}{\partial x} \right) \left(\frac{\partial}{\partial x} + \varphi_{0} \right) + \frac{\partial}{\partial x} \left(\frac{\partial}{\partial x} - x \frac{\partial}{\partial x} \right) \left(\frac{\partial}{\partial x} + \varphi_{0} \right) + \frac{\partial}{\partial x} \left(\frac{\partial}{\partial x} - x \frac{\partial}{\partial x} \right) \left(\frac{\partial}{\partial x} + \varphi_{0} \right) + \frac{\partial}{\partial x} \left(\frac{\partial}{\partial x} - x \frac{\partial}{\partial x} \right) \left(\frac{\partial}{\partial x} + \varphi_{0} \right) + \frac{\partial}{\partial x} \left(\frac{\partial}{\partial x} - x \frac{\partial}{\partial x} \right) \left(\frac{\partial}{\partial x} + \varphi_{0} \right) + \frac{\partial}{\partial x} \left(\frac{\partial}{\partial x} - x \frac{\partial}{\partial x} \right) \left(\frac{\partial}{\partial x} + \varphi_{0} \right) + \frac{\partial}{\partial x} \left(\frac{\partial}{\partial x} - x \frac{\partial}{\partial x} \right) \left(\frac{\partial}{\partial x} + \varphi_{0} \right) + \frac{\partial}{\partial x} \left(\frac{\partial}{\partial x} - x \frac{\partial}{\partial x} \right) \left(\frac{\partial}{\partial$$