- TWO TYPES OF WAVE BODY INTERACTION

 PROBLEMS ARE ENCOUNTERED FREQUENTLY

 IN APPLICATIONS AND SO LVED BY THE METHODS

 DESCRIBED IN THIS SECTION
 - ZERO-SPEED LINEAR WAVE BODY
 INTERACTIONS IN THE FREQUENCY DOTHAIN
 IN 2D AND 3D
 - FORWARD-SPEED SEAKEEPING PROBLEMS
 IN THE FREQUENCY OR TIME DOMAIN IN
 THREE DIMENSIONS (LINEAR & NONLINEAR)
- A CONSENSUS HAS BEEN REACHEDOVER THE

 PAST TWO DECADES THAT THE MOST EFFICIENT

 AND ROBUST SOLUTION METHODS ARE BASEDON

 GREEN'S THEOREM USING EITHER A WAVE-SOURCE

 POTENTIAL OR THE RANKINE SOURCE AS THE

 GREEN FUNCTION.—
- THE NUMERICAL SOLUTION OF THE RESULTING
 INTEGRAL EQUATIONS IN PRACTICE IS IN ALMOST
 ALL CASES CARRIED OUT BY PANEL METHODS. _

GREEN'S THEOREM GENERATES A BOUNDARY

INTEGRAL EQUATION FOR THE COMPLEX POTENTIAL

OF DUER THE BODY BOUNDARY SB FOR THE

PROPER CHOICE OF THE GREEN FUNCTION:

$$\iint_{S} \left(\varphi_{1} \frac{\partial \varphi_{2}}{\partial n} - \varphi_{2} \frac{\partial \varphi_{1}}{\partial n} \right) ds = 0$$

FOR ANY \$1, \$2 THAT SOVLE THE LAPLACE ECQ.
IN A CLOSED VOLUME V.

DEFINE THE VOLUME V AND S AS FOLLOWS:

THE FLUID VOLUME V IS ENCLOSED BY THE UNION OF SEVERAL SURFACES

$$S = S_B + S_F + S_m + S_H + S_E$$

SB: MEAN POSITION OF BODY SURFACE

SF : HEAN POSITION OF THE FREE SURFACE

 S_{m} : BOUNDING CYLINDRICAL SURFACE WITH RADIUS $R = (x^{2}+y^{2})^{1/2}$. WILL BE ALLOWED TO EXPAND AFTER THE STATEMENT OF GREEN'S THEOREM

SH: SEAFLOOR (ASSUMED FUAT) OR A SURFACE WHICH WILL BE ALLOWED TO FIPPROACH 2=-00

SE: SPHERICAL SURFACE WITH RADIUS V=E

CENTERED AT POINT & INTHE FLUID

DOWAIN

m: UNIT NORHAL VECTOR ON S, AT POINT ZOMS

DEFINE TWO VELOCITY POTENTIALS Y: (\$):

 $\varphi_1(\vec{x}) = \varphi(\vec{x}) = UNKOWN COMPLEX$ RADIATION OF DIFFRACTION
POTENTIAL

 $\varphi_2(\vec{x}) = G(\vec{x}; \vec{\xi}) = GREEN FUNCTION VALUE$ $AT POINT <math>\vec{x}$ DUE TO A SINGULARITY CENTERED AT POINT $\vec{\xi}$.

TWO TYPES OF GREEN FUNCTIONS WILL BE USED:

RANKINE SOURCE: VG = 0

$$G(\vec{x};\vec{\xi}) = -\frac{1}{4\pi} |\vec{x} - \vec{\xi}|^{-1} = -\frac{1}{4\pi r} = -\frac{1}{4\pi r} = -\frac{1}{4\pi} \left\{ (x-\vec{\xi})^2 + (y-n)^2 + (z-\vec{\xi})^2 \right\}$$

NOTE THAT THE FLUX OF FLUID EMITTED FROM & IS EQUAL TO 1. (VERIFY)

- THIS RANKINE SOURCE AND ITS GRADIENT WITH

RESPECT TO \(\frac{2}{5}\) (DIPOLES) IS THE GREEN FUNCTION

THAT WILL BE USED IN THE SHIP SEA KEEPING

PROBLEM

HAVELOCK'S WAVE SOURCE POTENTIAL

- ... ALSO KNOWN AS THE U=O WAVE GREEN FUNCTION IN THE FREQUENCY DOMAIN.
- SATISFIES THE FREE SURFACE CONDITION

 AND NEAR = BEHAVES LIKE A RANKINE

 SOURCE:

THE FOLLOWING CHOICE FOR G(X; 3) SATISFIES

THE LAPLACE EQUATION AND THE FREE-SURFACE

CONDITION:

$$G(\vec{x},\vec{\xi}) = -\frac{1}{4\pi} \left(\frac{1}{r} + \frac{1}{r_1} \right)$$

$$-\frac{k}{2\pi} \int_{0}^{\infty} \frac{du}{u-k} e^{-\frac{1}{2\pi} (uR)}$$

WHERE: $k = \omega/g$ $R = (x-3)^2 + (y-n)^2$

JOLUR) = BESSEL FUNCTION OF ORDER ZERO
JOL: CONTOUR INDENTED ABOVE POLE N=K

VERIFY THAT WITH RESPECT TO THE ARGUMENT X, THE VELOCITY POTENTIAL $\psi_z(\vec{x}) = G(\vec{x}; \vec{\xi})$ SATISFIES THE FREE SURFACE CONDITION:

$$\frac{\partial \varphi_{z}}{\partial z} - k \varphi_{z} = 0, \ z = 0$$

$$\varphi_{z} \sim -\frac{1}{4\pi} r^{-1}, \ \overrightarrow{X} \rightarrow \overrightarrow{S}$$

AS KR >00:

$$G \sim -\frac{1}{2} ke$$
 $k(2+3)$ (2) $H_0(kR)$

WHERE HO (KR) IS THE HANKEL FUNCTION OF THE SECOND KIND AND ORDER ZERO.

As KR > 00:

$$H_0^{(z)}(kR) \sim \sqrt{\frac{2}{\pi kR}} e^{-i(kR - \frac{\pi}{4})} + O(\frac{1}{R})$$

● THEREFORE THE REAL VELOCITY PUTENTIAL

REPRESENTS OUTGOING RING WAVES OF THE FORM

OF PRESENTS OUTGOING RING WAVES OF THE FORM

OF I (Wt-kr) HENCE SATISFYING THE RAPIATION

CONDITION.—

A SIMILAR FAR-FIELD RADIATION
 CONDITION IS SATISFIED BY THE VELOCITY
 POTENTIAL Ψ₁(x) = Ψ(x)

IT FOLLOWS THAT ON So:

•
$$\frac{\partial \varphi_1}{\partial n} = \frac{\partial \varphi_1}{\partial R} = -ik \varphi_1 \cdot -$$

•
$$\frac{\partial \varphi_2}{\partial n} = \frac{\partial \varphi_2}{\partial R} = -i k \varphi_2 \cdot -$$

THEREFORE:

$$\varphi_1 \frac{\partial \varphi_2}{\partial n} - \varphi_2 \frac{\partial \varphi_1}{\partial n} = -ik (\varphi_1 \varphi_2 - \varphi_2 \varphi_1) = 0$$

WITH ERRORS THAT DECAY LIKE R-3/2, HENCE
FASTER THAN R, WHICH IS THE RATE AT
WHICH THE SURFACE SA GROWS AS R-> 20.-

ON SF (z=0):
$$\frac{\partial h}{\partial n} = \frac{\partial h}{\partial r} = \frac$$

- IT FOLLOWS THAT UPON APPLICATION OF

 GREEN'S THEOREM ON THE UNKNOWN POTENTIAL $\varphi_1 \equiv \varphi$ AND THE WAVE GREEN FUNCTION $\varphi_2 \equiv G$ ONLY THE INTEGRALS OVER S_B AND S_E SURVIVE.
- OVER SH, EITHER $\frac{\partial \psi_1}{\partial n} = \frac{\partial \psi_2}{\partial n} = 0$ BY VIRTUE OF THE BOUNDARY CONDITION IF THE WATER DEPTH IS FINITE OR $\frac{\partial \psi_1}{\partial z} \to 0$, $\frac{\partial \psi_2}{\partial z} \to 0$ AS $Z \to -\infty$ BY VIRTUE OF THE VANISHING OF THE RESPECTIVE FLOW VELOCITIES AT LARGE DEPTHS.
- THERE REMAINS TO INTERPRET AND EVALUATE

 THE INTEGRAL OVER SE AND SB. START

 WITH SE:

$$I_{\epsilon} = \iint \left(\psi \frac{\partial G}{\partial n} - G \frac{\partial \psi}{\partial n} \right) ds_{\star},$$

$$S_{\epsilon}$$

$$\vec{r} = \epsilon \rightarrow 0$$

NOTE THAT THE INTEGRAL OVER Se IS OVER THE X VARIABLE WITH & BEING THE FIXED POINT WHERE THE SOURCE IS CENTERED.

NEAR
$$\vec{\xi}$$
: $G \sim -\frac{1}{4\pi r}$, $\frac{\partial G}{\partial n} = -\frac{\partial G}{\partial r} \sim \frac{1}{4\pi r^2}$
 $\varphi \rightarrow \varphi(\vec{\xi}) = \varphi(\vec{x})$ As $\varepsilon \rightarrow 0$
 $\vec{x} \leftrightarrow \vec{\xi}$

IN THE LIMIT AS V->O, THE INTEGRAND OVER
THE SPHERE SE BECOMES SPHERICALLY SYMMETRIC
AND WITH VANISHING ERRORS

$$I_{\epsilon} \rightarrow 4\pi r^{2} \left[\varphi(\vec{\xi}) \frac{1}{4\pi r^{2}} + G \frac{\partial \varphi}{\partial r} \right]$$

$$= \varphi(\vec{\xi})$$

IN SUMHARY:

$$\varphi(\vec{\xi}) + \iint \left[\varphi(\vec{x}) \frac{\partial G(\vec{x}; \vec{\xi})}{\partial n_x} - G(\vec{x}; \vec{\xi}) \frac{\partial \varphi}{\partial n_x} \right] ds_x$$

$$= 0$$

ON
$$S_B$$
: $\frac{\partial \phi}{\partial n_X} = V(x) = known from the Boundary condition of the rapiation and Diffraction problems$

DIT FOLLOWS THAT A RECATIONSHIP IS OBTAINED

BETWEEN THE VALUE OF $\varphi(\xi)$ AT SOME POINT

IN THE FLUID DOMAIN AND ITS VALUES $\varphi(\hat{x})$ AND NORMAL DERIVATIVES OVER THE BODY

BOUNDARY:

$$\varphi(\vec{\xi}) + \iint \varphi(\vec{x}) \frac{\partial G(\vec{x}; \vec{\xi})}{\partial n_{x}} ds_{x} = \iint_{S_{B}} G(\vec{x}; \vec{\xi}) V(\vec{x}) ds_{x}$$

STATED DIFFERENTLY, KNOWLEDGE OF UP AND DATE OVER THE BODY BOUNDARY ALLOWS THE DETERMINATION OF UP AND UPON DIFFERENTIATION OF DATE IN THE FLUID DOMAIN.

IN ORDER TO DETERMINE $\psi(\vec{x})$ ON THE BODY BOUNDARY S_B , SIMPLY ALLOW $\vec{\xi} \rightarrow S_B$ IN WHICH CASE THE SPHERE S_{ϵ} BECOMES A $\frac{1}{2}$ SPHERE AS $\epsilon \rightarrow 0$:

- NOTE THAT \$ 13 A FIXED POINT WHERE THE POINT SOURCE IS CENTERED AND \$ 15 A DUMMY INTEGRATION VARIABLE MOVING OVER THE BODY BOUNDARY SB.
- THE REDUCTION OF GREEN'S THEOREM DERIVED

 ABOVE SURVIVES ALMOST IDENTICALLY

 WITH A FACTOR OF 1/2 NOW MULTIPLYING

 THE IE INTEGRAL SINCE ONLY 1/2 OF THE

 SE SURFACE LIES IN THE FLUID DOMAIN

 IN THE LIMIT AS E > O AND FOR A BODY

 SURFACE WHICH IS SMOUTH. IT FOLLOWS

 THAT:

$$\frac{1}{2}\varphi(\vec{\xi}) + \iint \varphi(\vec{x}) \frac{\partial G(\vec{x}; \vec{\xi})}{\partial n_x} dS_x$$

$$= \iint_{S_{B}} G(\vec{x}; \vec{\xi}) V(\vec{x}) dS_{x}$$

WHERE NOW BUTH X AND & LIE ON THE
BODY SURFACE. THIS BECOMES AN INTEGRAL
EQUATION FOR Y(X) OVER A SURFACE SB OF
BOUNDED EXTENT. ITS SOLUTION IS CARRIED
OUT WITH PANEL HETHODS DESCRIBED BELOW

THE INTERPRETATION OF THE DERIVATIVE UNDER THE INTEGRAL SIGN IS AS FOLLOWS:

$$\frac{\partial G}{\partial n_{x}} = \overrightarrow{n}_{x} \cdot \nabla_{x} G(\overrightarrow{x}; \overrightarrow{\xi})$$

$$= (n_{1} \frac{\partial}{\partial x} + n_{2} \frac{\partial}{\partial y} + n_{3} \frac{\partial}{\partial z}) G(\overrightarrow{x}; \overrightarrow{\xi})$$

WHERE DERIVATIVES ARE TAKEN WRT THE FIRST ARGUNENT FOR A POINT SOURCE CENTERED AT POINT &.

IN THE ABSENCE OF THE FREE SURFACE, THE DERIVATION OF THE GREEN INTEGRAL EQUATION REMAINS ALMOST UNCHANGED USING:

$$\varphi_{2}(\vec{x}) = -\frac{1}{4\pi} |\vec{x} - \vec{\xi}|^{-1}$$

$$= G(\vec{x}; \vec{\xi})$$

THE RANKINE SOURCE AS THE GREEN FUNCTION

AND USING THE PROPERTY THAT AS R-> 00

FOR CLOSED BOUNDARIES SB WITH NO SHED WAKES RESPONSIBLE FOR LIFTING EFFECTS

THE RESULTING INTEGRAL EQUATION FOR $\varphi(\vec{x})$ OVER THE BODY BOUNDARY BECOMES:

$$\frac{1}{2} \varphi(\vec{\xi}) + \iint_{S_B} \varphi(\vec{x}) \frac{\partial G(\vec{x}; \vec{\xi})}{\partial n_x} ds_x$$

$$= \iint_{S_B} G(\vec{x}; \vec{\xi}) V(\vec{x}) ds_x$$

$$= \iint_{S_B} G(\vec{x}; \vec{\xi}) V(\vec{x}) ds_x$$

WITH
$$V(\vec{x}) = \frac{\partial \psi}{\partial n}$$
, on S_B

EXAMPLE: UNIFORM FLOW PAST SB

$$\overline{\Phi} = U \times + \psi, \quad \frac{\partial \overline{\Phi}}{\partial n} = 0, \text{ on } S_B$$

$$\Rightarrow \frac{\partial \psi}{\partial n} = -\frac{\partial}{\partial n} (U \times) = -n, U = V(\vec{x})$$

SO THE RHS OF THE GREEN ELUATION BECOHES: