RANKINE INTEGRAL EQUATIONS FOR SHIP FLOW PROBLEMS WITH FORWARP SPEED

- THE GREEN INTEGRAL EQUATION EXTENDS

 EASILY TO FLOWS PAST SHIPS IN CALM

 WATER AND IN WAVES WHEN THE FREE

 SURFACE CONDITION IS MORE COMPLEX THAN

 THAT OF THE U=0 FREQUENCY DOMAIN

 PROBLEM
- · NEUMANN-KELVIN PROBLEM IN TIME DOMAIN

CONSIDER A VESSEL WHICH STARTS FROM REST AT t=0 AND TRANSLATES FORWARD WITH CONSTANT VELOCITY U AND ALSO POSSIBLY OSCILLATING WITH AMPLITUDES \$:(t) IF AMBIENT WAVES ARE PRESENT. IT WAS SHOWN EARLIER THAT THE SIMPLEST FORWARD SPEED FREE SURFACE CONDITION FOR THE FORWARD SPEED PROBLEM TAKES
THE FORM:

$$\left\{ \left(\frac{\partial}{\partial t} - U \frac{\partial}{\partial x} \right) \varphi + g \frac{\partial \varphi}{\partial z} = 0, \quad z = 0 \right.$$

$$\left\{ \left(\frac{\partial}{\partial t} - U \frac{\partial}{\partial x} \right) \varphi + g \frac{\partial \varphi}{\partial z} = 0, \quad z = 0 \right.$$

RELATIVE TO THE SHIP FRAME. THE NORMAL VELOCITY VON 58 CAN BE OF THREE FORMS:

$$V(\vec{x}) = \begin{cases} U n_1, t > 0: FORWARD \\ TRANSLATION \\ Ti \(\vec{5}; lt \), t > 0: RADIATION \\ - \(\vec{2} \psi \vec{T} \) t > 0: DIFFRACTION
$$- \frac{3}{3} \frac{4}{3} \frac{1}{3} \frac{1}{$$$$

MORE GENERAL FREE-SURFACE CONDITIONS WITH

SPACE DEPENDENT COEFFICIENTS ARISING

FROM GRADIENTS OF THE DOUBLE-BODY FLOW

EXIST AND ARE DESCRIBED IN THE LITERATURE

THE STEPS IN DERIVING THE RELEVANT INTEGRAL

EQUATIONS ARE VERY SIMILAR TO THEONES THAT

FOLLOW:

- WAVE GREEN FUNCTIONS THAT SATISFY
 ANALYTICALLY THE TIME-DOMAIN FREE
 SURFACE CONDITION D'TATED ABOVE EXIST
 AND ARE DERIVED IN W &L. THEIR
 EVALUATION IS HOW EVER TIME-CONSUMING
 AND THEY APPLY ONLY TO THE NEUMANNKELVIN FORMULATION.
- PROCEEDING WITH THE DERIVATION OF
 THE GREEN INTEGRAL EQUATION AS A BONE
 AND USING THE RANKINE SOURCE AS THE
 GREEN FUNCTION:

$$\varphi_{2}(\vec{x}) = -\frac{1}{4\pi} |\vec{x} - \vec{\xi}|^{-1}$$

$$= G(\vec{x}; \vec{\xi})$$

WEOBTAIN:

$$\frac{1}{2} \varphi(\vec{z}) + \iint \varphi(\vec{x}) \frac{G(\vec{x}; \vec{\xi})}{\partial n_{x}} dS_{x}$$

$$+ \iint [\varphi(\vec{x}) \frac{\partial G(\vec{x}; \vec{\xi})}{\partial z} - G(\vec{x}; \vec{\xi}) \frac{\partial \varphi}{\partial z}] dxdy$$

$$= \iint G(\vec{x}; \vec{\xi}) \vee (\vec{x}) dS_{x} \cdot -$$

$$S_{B}$$

- NOTE THAT THE INTEGRAL OVER THE FREE SURFACE (2=0) DOES NOT VANISH SINCE WE HAVE NOTUSED THE RELEVANT WAVE GREEN FUNCTION.
- OTHERWISE THE REMAINING INTEGRAL
 OVER SB RETAINS ITS FORM. THE INTEGRAL
 OVER SM CAN BE SHOWN TO VANISH. THE
 PROOF IS NON-TRIVIAL AND MAY BE FOUND IN
 REFERENCES.

OVER Z=0, IT FOLLOWS FROM THE FREE-SURFACE CONDITION:

$$\frac{\partial z}{\partial \varphi} = -\frac{1}{9} \left(\frac{\partial t}{\partial t} - \upsilon \frac{\partial x}{\partial x} \right)^2 \varphi, \ z = 0$$

UPON SUBSTITUTION, THE SECOND INTEGRAL OVER SF BECOMES:

$$I_{F} = \iint \left[\psi(\vec{x}) \frac{\partial G(\vec{x}; \vec{\xi})}{\partial \vec{z}} + \frac{1}{9} G(\vec{x}; \vec{\xi}) \left(\frac{\partial}{\partial t} - v \frac{\partial}{\partial x} \right)^{2} \psi(\vec{x}) \right] ds$$

TANGENTIAL GRADIENTS OF Y (X) ARE NOW PRESENT LEADING TO AN INTEGRO-DIFFERENTIAL EQUATION:

$$\frac{1}{2} \varphi(\vec{\xi}) + \iint \varphi(\vec{x}) \frac{\partial G(\vec{x}; \vec{\xi})}{\partial n_{x}} dS_{x}$$

$$+ \iint \left[\varphi(\vec{x}) \frac{\partial G(\vec{x}; \vec{\xi})}{\partial z} + \frac{1}{9} G(\vec{x}; \vec{\xi}) \left(\frac{\partial}{\partial t} - v \frac{\partial}{\partial x} \right)^{2} \varphi(\vec{x}) \right] dx dy$$

$$= \iint V(\vec{x}) G(\vec{x}; \vec{\xi}) dS_{x}$$

$$S_{B}$$

- UNKNOWN IS $φ(\vec{x})$ OVER $S_B A S_F \cdot ITS X -$ DERIVATIVES HAT BE APPROXIMATED BY CAREFULLY
 SELECTED NUMERICAL DIFFERENTIATION SCHEMES
 FORMING A CORE PART OF RANKINE PANEL
 METHODS, DISCUSSED BELOW
- THE INTEGRAL OVER THE INFINITE FREE

 SURFACE SF (Z=0) IS TRUNCATED AT SOME

 FINITE DISTANCE FROM THE SHIP AS DRAWN

 BELOW

A DOMAIN DENOTED BY THE SHADED

AREA IS ALSO INTROPUCED DEFINED

AS THE "BEACH". THIS IS LOCATED AS THE

OUTER BOUNDARY OF SF AND SELECTED

SO THAT OVER ITS SURFACE THE FOLLOWING

FREE SURFACE CONDITION IS ENFORCED:

$$\left(\frac{\partial t}{\partial t} - U\frac{\partial x}{\partial t}\right)^{2} \varphi + g\frac{\partial z}{\partial t} + 2\nu\left(\frac{\partial t}{\partial t} - U\frac{\partial x}{\partial t}\right) \varphi + \nu^{2} \varphi = 0,$$

- THIS CONDITION DIFFERS FROM THE NEUMANNKELVIN CONDITION BY THE ADDITION OF THE
 TERMS THAT ARE MULTIPLIED BY THE
 DISSIPATIVE PARAMETER V (X) WHICH VARIES
 FROM V=0 AT THE INNER BOUNDARY TO
 A FINITE VALUE AT THE OUTER BOUNDARY
 OF THE BEACH.
- THE TIME TO THE FREQUENCY DOMAIN VIA

 THE TIME TO THE FREQUENCY DOMAIN VIA

 WIS COSITY THAT PLAYS A KEY ROLE IN THE

 ENFORCENENT OF THE RAPIATION CONDITIONS.—

 (SEE W & L)