NONLINEAR EFFECTS

SOME OF THE MOST IMPORTANT NONLINEAR EFFECTS

ARISING IN CONNECTION WITH WAVE-BODY

INTERACTIONS ARE

- DRIFT FORCES. THE MEAN

 FORCES EXERTED ON FLOATING OR

 SUBMERGED BODIES BY AMBIENT WAVES

 MAY BE TREATED VERY WELL BY

 PERTURBATION THEORY
- SLAMMING. THESE ARE HIGHLY

 NONLINEAR EFFECTS ARISING WHEN

 A SHIP SECTION IMACTS UPON THE

 WATER SURFACE OR WHEN A STEEP

 OR BREAKING WAVE IMPINGES UPON

 A FLOATING STRUCTURE, MAY BE

 MODELED BY FULLY OR PARTIALLY

 NONLINE AR POTENTIAL FLOW MODELS

 OF ANALYTICAL OR NUMERICAL NATURE
- FORCES DUE TO VISCOUS FLOW
 SEPARATION AROUND FLOATING

STRUCTURES AND THEIR SUBSYSTEMS, E.G.

RISERS, HODRING LINES ETC. VORTEX

INDUCED VIBRATIONS (VIV) IS AN IMPORTANT

EXAMPLE. SUCH EFFECTS CAN BE TREATED

EXPERIMENTALLY AND COMPUTATIONALLY

BY SOLVING THE NAVIER-STOKES

EQUATIONS

- NONLINEAR SHIP MOTIONS IN STEEP

 WAVES. THESE EFFECTS ARE MOSTLY OF

 POTENTIAL FLOW NATURE AND ARE BEING

 TREATED BY NONLINEAR RANKINE PANEL

 METHODS. THE PRIMARY NONLINEARITY

 IS THE VARIABLE WE THESS OF THE SHIP

 HULL, THE NONLINEARITY OF THE KINEHATICS

 OF AMBIENT WAVES AND THE NUMERICAL

 SOLUTION OF THE EQUATIONS OF MOTION IN

 THE TIME DOMAIN
 - NONLINEAR RESPONSES OF DEEP WATER

 OFFSHORE PLATFORMS IN CERTAIN FLEXURAL

 MODES OF THEIR TETHERS. THESE EFFECTS

 ARE KNOWN AS SPRINGING & RINGING AND

 ARE TREATED BY A COMBINATION OF

 PERTURBATION AND NONLINEAR METHODS AND

 EXPERIMENTS.—

DRIFT FORCES

- DRIFT FORCES WILL FIRST BE CONSIDERED IN REGULAR WAVES. THE MAIN RESULTS WILL THEN BE EXTENDED IN RANDOM WAVES
- ONE VERY IMPORTANT PROPERTY OF DRIFT FORCES OTHER THAN THEIR PRACTICAL SIGNIFICANCE IS THAT THEY DEPEND ONLY ON THE LINEAR SO LUTION

- MEAN DRIFT FORCE ON A VERTICAL WALL

· NONLINEAR HYDRODYNAMIC PRESSURE:

$$P = -P \left(\frac{\partial f}{\partial \phi} + \frac{1}{2} \nabla \phi \cdot \nabla \phi + g z \right)$$

· NONLINEAR HORIZONTAL FORCE ON THE WALL!

$$F_{x} = \int_{-\infty}^{3} p \, dz, \quad J = -\frac{1}{9} \frac{\partial \phi}{\partial t} \Big|_{z=0}^{2} + O(A^{2})$$

WE NEED TO EVALUATE FX CORRECT TO $O(A^2)$ NOTING THAT THE MEAN TIME VALUE OF EFFECTS

OF O(A) WHICH ARE LINEAR, IS ZERO.

ASSUME A PERTURBATION EXPANSION FOR +:

$$\phi = \phi_1 + \phi_2 + \phi_3 + \cdots$$

$$0(A) \quad A^2 \quad A^3$$

WHERE THE POTENTIAL DERIVED EARLIER IS THE LINEAR TERM DENOTED ABOVE BY ϕ_i .

IN EVALUATING THE LEADING ORDER EFFECT

IN THE MEAN HORIZONTAL FORCE WE DROPTERMS

WITH ZERO MEAN VALUES OR OF ORDER A3 AND

HIGHER. WE NOTE WITHOUT PROOF THAT

$$\frac{1}{\varphi_2(t)} = 0$$

THE TOTAL HORIZONTAL FORCE Fx ALSO ACCEPTS
THE EXPANSION:

$$F_{1} = \int_{0(A)}^{1} \frac{1}{O(A^{2})} \frac{1}{O(A^{3})}$$

$$F_{1} = \int_{-\infty}^{0} \frac{1}{P_{1}} dz = -P \int_{0}^{0} \frac{1}{2} dz = O(A)$$

$$F_{1}(t) = O \quad (VERIFY)$$

$$F_{2} = \int_{-\infty}^{0} \frac{1}{2} dz + \int_{0}^{1} \frac{1}{2} dz = O(A^{2})$$

$$= -P \int_{-\infty}^{0} \left(\frac{1}{2} dz + \frac{1}{2} \nabla \phi_{1} \cdot \nabla \phi_{1} \right) dz$$

$$-P \int_{0}^{3} \left(\frac{1}{2} dz + \frac{1}{2} \nabla \phi_{1} \cdot \nabla \phi_{1} \right) dz$$

WITH ERRORS OF O(A3), THE LAST INTEGRAL

MAY BE APPROXIMATED BY TAYLOR EXPANDING

ABOUT Z=0 THE FIRST TERM AND BY DIRECT

INTEGRATION OF THE SECOND. IT FOLLOWS THAT:

$$\int_{0}^{5} \left(\frac{\partial \phi_{1}}{\partial t} + gz \right) dz = \int_{0}^{2} \frac{\partial \phi_{1}}{\partial t} \Big|_{z=0}^{2} + \frac{1}{2}gJ^{2} + O(A^{3})$$

$$= -gJ^{2} + \frac{1}{2}gJ^{2} = -\frac{1}{2}gJ^{2} - \frac{1}{2}gJ^{2} - \frac$$

COLLECTING TERMS:

$$F_{2}(t) = -P \int_{-\infty}^{\infty} \frac{\partial \phi_{2}}{\partial t} dz$$

$$-\frac{1}{2}P \int_{-\infty}^{\infty} \nabla \phi_{1} \cdot \nabla \phi_{1} dz$$

$$+\frac{1}{2}P g \delta(t) + O(A^{3})$$

THE MEAN TIME VALUE OF $\frac{\partial \phi_2}{\partial t} = 0$ FOR ANY STATIONARY SIGNAL $\phi_2(t)$. SO THE SECOND - ORDER PUTENTIAL DOES NOT CONTRIBUTE TO THE MEAN DRIFT FORCE AS STATED ABOVE.

- OF THE REMAINING TWO TERMS THE QUADRATIC BERNOULLI TERM CONTRIBUTES A SUCTION FORCE WHICH IS "PULLING" THE WALL INTO THE WAVE (COUNTERINTUITIVE BUT TRUE!) WHILE THE LAST TERM IS ALWAYS POSITIVE PUSHING THE WALL IN THE DIRECTION OF THE WAVE AS EXPECTED
- FORCE ARISES FROM THE PRESSURE INTEGRATION

 OVER THE SURF-ZONE WHICH IS MORE THAN ENDUGH

 TO OVERCOME THE SUCTION FORCE.

UPON SUBSTITUTION OF THE LINEAR VELOCITY
POTENTIAL DERIVED ABOVE AND USE OF THE
FAMILIAR IDENTITY:

IRe (A, eint) Re (Azeint) = 1 Re { A, A2*}

$$\frac{1}{F_{x}} = \frac{1}{2} pg A^{2} + O(A^{3})$$

SO THE MEAN HORIZONTAL FORCE ON A VERTICAL WALL OF INFINITE DRAFT BY A PLANE PROGRESSIVE WAVE HAS A FINITE MEAN VALUE N A².

IF THE PLANE REGULAR WAVE IS INCIDENT AT AN ANGLE THE MEAN HORIZONTAL FORCE MAY

BE SHOWN TO TAKE THE VALUE:

THE VALUE:

$$F_{X} = \frac{1}{2} \rho g A^{2} \cos^{2}\beta. - \frac{1}{2} (VERIFY).$$

IN SPITE OF THEIR SIMPLICITY THE ABOVE RESULTS
HAVE A NUMBER OF USEFUL APPLICATIONS IN
PRACTICE WHEN WAVES THAT ARE SUFFICIENTLY
SHORT INTERACT WITH FLOATING STRUCTURES.

SOHE EXAMPLES FOLLOW:

FOR A BARGE LIKE SHIP WITH LENGTH L

THE MEAN SWAY DRIFT FORCE IN REASONABLY

SHORT WAVES IS APPROXIMATELY GIVEN BY:

2. EXTEND THE ABOVE RESULT WHEN THE SHIP HULL SECTION HAS FLARE WITH SLOPE &.

- SHORT WAVES INCIDENT UPON A SHIP AT AN ANGLE ARE LOCALLY REFLECTED AS IF THEY ENCOUNTER A CONTINUUM OF VERTICAL WALLS INCLINED AT VARYING ANGLES. WE CAN THUS APPLY THE RESULT DERIVED ABOVE.
- ENCOUNTER WAVES. THIS REGION IS BOLDFACED
 ABOVE AND CAN BE DETERMINED BY A SIMPLE
 GEOMETRICAL ARGUMENT. DENOTE THIS PORTION
 OF THE SHIP WATERLINE BY M. IT IS EASY
 TO SHOW THAT THE MEAN DRIFT FORCE IN
 THE (X,Y) DIRECTIONS IS GIVEN BY

$$\vec{F} = \begin{pmatrix} \vec{F}_x \\ \vec{F}_y \end{pmatrix} = \frac{1}{2} P g A^2 \int |\vec{n} \cdot \begin{pmatrix} \cos\beta \\ \sin\beta \end{pmatrix} |\vec{n} \, d\ell$$
(VERIFY)

THIS RESULT IS KNOWN AS RAY THEORY . -

4. CONSIDER A VERTICAL CIRCULAR CYLINDER PIERCING THE FREE SURFACE AND SHORT WAVES INCIDENT UPON 1T:

USE THE RESULT FROM RAY THEORY STATED
ABOVE TO SHOW THAT THE MEAN DRIFT FORCE
IN THE X-DIRECTION IS GIVEN BY:

$$\overline{F_x} = \frac{2}{3} \rho g A^2 R. -$$

5. IT IS POSSIBLE TO EXTEND RAY THEORY WITH LITTE ADDITIONAL COMPLEXITY TO THE CASE WHERE THE VESSEL A DVANCES WITH A MODERATE FORWARD SPEED. (SEE OMF)

IN THE MORE GENERAL CASE OF SURFACE

WAVES INTERACTING WITH FLOATING BODIES

OSCILLATING DUE TO THE AMBIENT WAVES, A

HORE GENERAL EXPRESSION MAY BE DERIVED

BY DIRECTLY INTEGRATING THE PRESSURE

OVER THE <u>INSTANTANEOUS</u> POSITION OF THE

VESSEL WETTED SURFACE AND <u>LINEARIZING</u>

ABOUT ITS MEAN POSITION KEEPING CONSISTENTLY

TERMS OF O (A²). THE EXPRESSION IS NOT GIVEN

HERE FOR SIMULCITY.

- THE MEAN DRIFT FORCE BY APPLYING THE
 MOMENTUM CONSERVATION PRINCIPLE DERIVED
 EARLIER. THIS APPROACH PROVIDES AN
 EXPRESSION FOR THE DRIFT FORCE IN TERMS
 OF THE WAVE SYSTEMS IN THE FAR FIELD
 AND CAN BE SHOWN TO PRODUCE THEORETICALLY
 AN IDENTICAL RESULT TO THAT OBTAINED FROM
 THE CONSIDERABLY MORE ELABORATE TASK
 OF USING NEAR-FIELD PRESSURE INTEGRATION
- NOT BE PRESENTED HERE, AS FOR THE PRESSURE INTEGRATION, AND CAN BE FOUND IN THE REFERENCES CITED IN OMF AND WEL. IT IS NOTED THAT IT IS NUMERICALLY SUPERIOR TO PRESSURE INTEGRATION AND IS OFTEN PREFERED IN PRACTICE
- BELOW WE PROVE FROM FIRST PRINCIPLES

 THE RESULT IN TWO DIMENSIONS WHICH IS

 ITSELF QUITE USEFUL IN PRACTICE AND

 EDUCATIONAL.

- ANBIENT REGULAR WAVES WITH AMPLITUDE A

 ARE INCIDENT ON A FLOATING BODY IN 20 WHICH
 IS ALLOWED TO OSCILLATE FREELY IN HEAVE,

 SWAY AND ROLL
- AS A RESULT OF THE DIFFRACTION AND RADIATION

 WAVE DISTURBANCES, A REFLECTED PLANE

 PROGRESSIVE WAVE WITH COMPLEX AMPLITUDE A

 APPEARS AT X = DO OVER A CONTROL SURFACE

 S- AND A RADIATED/DIFFRACTED WAVE WITH

 AMPLITUDE A+ APPEARS AT X=+ DO OVER S+
- APPLYING THE MOMENTUM CONSERVATION

 PRINCIPLE IN THE X-DIRECTION WITHIN THE

 VOLUME V(t) BOUNDED BY 5+5+5+5(t)+5(t)

 WE OBTAIN:

$$D = F_{x} = -\iint \left[p\vec{n} + p\vec{\vee} (V_{n} - U_{n}) \right] ds$$

$$s^{+} s^{-}$$

WHERE THE MONENTUM CONSERVATION PRINCIPLE
DERIVED EARLIER HAS BEEN APPLIED. HEAN VALUES
IN TIME ARE TAKEN LEADING TO A VANISHING
MEAN VALUE FOR THE MOMENTUM RATE OF CHANGE
WITHIN THE VOLUME V(t), FOR FIXED St. _

- THE MEAN MOMENTUM FLUX ACROSS SF(+) IS ZERO
- THE BODY SECTION IS THE DRIFT FORCE $D = F_x$
- THERE REHAINS TO EVALUATE THE INTEGRALS

 OVER S^{\pm} WHICH ARE SURFACES FIXED IN SPACE

 AND THEREFORE, $U_{n}=0$ on S^{\pm} . RECALL THAT $\vec{V}=\vec{V}$ IS THE TOTAL FLUID VELOCITY AND \vec{V} IS GIVEN BY THE BERNOULLI EQUATION
- THE DEFINITION OF THE PLANE PROGRESSIVE WAVE FORMS DEFINED ABOVE WILL BE INTRODUCED AND AN EXPRESSION WILL BE DERIVED FOR DINTERMS OF A, A⁺, A⁻. THE RESULT IS MILDLY SURPRISING!

DEFINE THE VELOCITY PUTENTIALS FOR THE PLANE PROGRESSIVE WAVES DESCRIBED ABOVE:

$$\Phi_{I} = \mathbb{R}e \left\{ \frac{igA}{\omega} e^{kz-ikx+i\omega t} \right\}$$

$$\Phi^{+} = \mathbb{R}e \left\{ \frac{igA^{+}}{\omega} e^{kz-ikx+i\omega t} \right\}$$

$$\Phi^{-} = \mathbb{R}e \left\{ \frac{igA^{-}}{\omega} e^{kz+ikx+i\omega t} \right\}$$

UPON SUBSTITUTION INTO THE MOMEUTUM FLUX EXPRESSION DEFINED A BOVE AND AFTER SOME SIMPLE ALGEBRATHAT HAS BEEN ILLUSTRATED EARLIER, IT FOLLOWS THAT:

$$D = \frac{99A}{4} (A^{+} + A^{+*}) - \frac{99}{4} \{ |A^{+}|^{2} - |A^{-}|^{2} \}$$

WHERE (*) DENOTES THE COMPLEX CONJUGATE.

NOTE THAT A IS REAL AND A + ARE COMPLEX

QUANTITIES.

ALSO NOTE THAT THE DRIFT FORCE AS STATED ABOVE DOES NOT APPEAR TO DEPEND ON A SINCE THE AMBIENT WAVE APPEARS AT BOTH INFINITIES. THE ABOVE EXPRESSION SIMPLIFIES A LOT BY INVOKING ENERGY CONSERVATION.

- THE FLOW AROUND THE FLOATING BODY IS

 CONSERVATIVE IF VISCOUS EFFECTS OR

 BREAKING WAVE EFFECTS ARE IGNORED. THE

 FORMER ARE OFTEN PRESENT WHEN VORTICES

 ARE SHED AROUND CORNERS OF THE BODY,

 BILOGE KEELS ETC. _ IN SUCH CASES THE

 EXPESSIONS BELOW MAY BE APPROXIMATELY

 VALID OR INVALID.
- IN THE ABSENCE OF ENERGY LOSSES THE

 MEAN ENERGY FLUX ACROSS S THUST BE

 IDENTICAL TO THAT ACROSS S THE

 LIMITATIONS OF LINEAR THEORY:

-> ENERGY FLUX ACROSS 5+:

- ENERGY FLUX ACROSS ST:

$$|A|^{2} = |A^{-}|^{2} + |A + A^{+}|^{2}$$

$$= |A^{-}|^{2} + |A|^{2} + |A^{+}|^{2} + A(A^{+}A^{+*})$$

$$\Rightarrow A(A^{+} + A^{+*}) = -(|A^{+}|^{2} + |A^{-}|^{2}).$$

THIS RELATION (RESTRICTION) UPON THE WAVE
AMPLITUDES IS THE RESULT OF ENERGY CONSERVATION.

UPON SUBSTITUTION IN D:

$$D = \frac{1}{2} pg |A^{-1}|^{2}.$$

THIS INTERESTING RESULT STATES THAT THE MEAN DRIFT FORCE ON A TWO-DIMENSIONAL BODY FREELY FLOATING IN AMBIENT REGULAR WAVES (THAT SHEDS NO VORTICES) IS IDENTICALLY EQUAL, ACCORDING TO LINEAR THEORY, TO THE ABOVE EXPRESSION THAT DEPENDS ONLY ON THE AMPLITUDE OF THE RELECTED WAVE.

WILL EXPERIENCE ZERO MEAN DRIFT FORCE!

SUBHERGED FIXED CIRCLE

$$\sum_{i=1}^{A} \sum_{j=0}^{A} t^{j}$$

IT CAN BE SHOWN THAT A SUBMERGED FIXED CIRCLE DOES NOT RELECTANY OF THE AMBIENT WAVE DISTURBANCE. HENCE

- THIS IS THE ONLY CASE WE KNOW IN ZOOR

 3D WHERE THE HEAN DRIFT FORCE IS ZERO.

 IF THE CIRCLE IS ALLOWED TO MOVE THEN D > 0
- WE KNOW OF NO OTHER SHAPE IN 2D WITH

 THE SAME PROPERTY. IT IS NOTEWORTHY THAT

 DOO IN THE CASE OF A CIRCLE FIXEDIN

 FINITE DEPTH.
- O IN PRACTICE THE FLOW OVER THE CIRCLE WILL SEPARATE AND THE ABOVE RESULT IS NOT VALID. SEE OHF FOR A DISCUSSION OF VISCOUS EFFECTS AROUND BLUFF BODIES. _