SECOND-OPDER WAVE EFFECTS

- LINEAR THEORY IS A VERY POWERFUL AND

 USEFUL MEANS OF MODELING THE RESPONSES

 OF FLOATING BODIES IN REGULAR AND

 RANDOM WAVES. YET, FOR CERTAIN TYPES

 OF FLOATING STRUCTURES AND CERTAIN

 TYPES OF EFFECTS NONLINEAR EXTENSIONS

 ARE NECESSARY
- MEAN DRIFT FORCES IN REGULAR WAVES

 DO NOT REQUIRE AN ACCOUNT OF NONLINEAR

 EFFECTS. HOWEVER, THE DEFINITION OF

 THE QUADRATICALLY NONLINEAR SLOW DRIFT

 EXCITATION FORCE IN A SEASTATE RECRUIRES

 A SECOND-ORDER THEORY IN PRINCIPLE
- TENSION-LEG PLATFORMS THAT OPERATE

 IN LARGE WATER DEPTHS FOR THE EXPLORATION

 AND EXTRACTION OF HY DRO CARBONS OFFSHORE

 OFTEN UNDERGO RESONANT HEAVE OSCILLATIONS

 WITH PERIODS OF A FEW SECONDS WHICH CAN

 ONLY BE EXCITED BY NONLINEAR WAVE

 EFFECTS. THEIR TREATMENT REQUIRES A

 SECOND-ORDER THEORY AND PEPHAPS A MORE
 EXACT TREATMENT.

THE SECOND-ORDER FREE SURFACE CONDITION OF FREE WAVES WAS DERIVED EARLIER IN THE FORM:

KINEHATIC CONDITION:

•
$$\frac{9f}{925} - \frac{9f}{945} = 2^{1} \frac{955}{954^{1}} - \Delta \phi^{1} \cdot \Delta 2^{1}$$
; $5 = 0$

DYNAMIC CONDITION:

•
$$5z + \frac{1}{9} \frac{\partial \phi_2}{\partial t} = -\frac{1}{9} \left(\frac{1}{2} \nabla \phi_1 \cdot \nabla \phi_1 + 5, \frac{\partial^2 \phi_1}{\partial z \partial t} \right)_{z=0}$$

HYDRODYNAMIC PRESSURE:

•
$$P_2 = -P\left(\frac{\partial \phi_2}{\partial t} + \frac{1}{2} \nabla \phi_1 \cdot \nabla \phi_1\right)$$

AT SOME FIXED POINT IN THE FLUID DOMAIN

ASSUMING THAT THE LINEAR SOLUTION 13 KNOWN AND ELIMINATING 3_2 FROM THE KINEMATIC CONDITION, WE OBTAIN THE MORE FAMILIAR FORM;

$$\nabla^2 \phi_2 = 0$$

$$\frac{\partial f_{5}}{\partial y_{5}} + \partial \frac{\partial f_{5}}{\partial \phi_{5}} = -\frac{\partial f}{\partial y_{5}} \left(\Delta \phi' \cdot \Delta \phi' \right) + \frac{\partial}{\partial y_{5}} \frac{\partial f}{\partial y_{5}} \frac{\partial f}{\partial y_{5}} \left(\frac{\partial f_{5}}{\partial \phi'} + \partial \frac{\partial f}{\partial \phi'} \right)^{5} = 0$$

$$2^{5} = -\frac{3}{1} \left(\frac{9+1}{9+5} + \frac{5}{1} \Delta \phi' \cdot \Delta \phi' + 2' \frac{9+9+1}{95+1} \right)^{5=0}$$

- THE SOLUTION OF THE ABOVE BOUNDARY-VALUE
 PROBLEM IS AVAILABLE IN CLOSED FORM WHEN
 THE LINEAR POTENTIAL &, IS THE LINEAR
 SUPERPOSITION OF REGULAR PLANE PROGRESSIVE
 WAVES
- VERY USEFUL INSIGHTS FOLLOW FROM THIS
 SOLUTION EVEN IN THE ABSENCE OF FLOATING
 BODIES.
- THE STATEMENT OF THE SECOND-ORDER

 PROBLEM WHEN A BODY 13 PRESENT RECLUIRES

 THE DEPIVATION OF A SECOND-ORDER BODY

 BOUNDARY CONDITION WHICH IS INVOLUED.

 THE SOLUTION OF THE SECOND-ORDER WAVE

 BODY INTERACTION. PROBLEM IS ONLY POSSIBLE

 NUMERICALLY AND IT IN GENERAL A COMPLEX

 TIME CONSUMING TASK.

THE FORCING IN THE RIGHT-HAND SIDE OF
THE SECOND ORDER FREE SURFACE CONDITION
IS A QUADRATIC FUNCTION OF THE LINEAR
SOLUTION. HENCE, IF THE LINEAR PROBLEM
IS WRITTEN AS THE SUM OF MONOCHROMATIC
WAVE COMPONENTS, THE TREATMENT OF THE
MOST GENERAL SECOND ORDER PROBLEM
CAN BE ACCOMPLISHED BY TREATING THE
SECOND-ORDER FREE-SURFACE CONDITION BY
A BI-CHROMATIC DISTURBANCE (VERIFY)

THE ABOVE CONCLUSION IS ANALOGOUS TO THE FOLLOWING IDENTITY:

IT FOLLOWS THAT THE FORUNG AND HENCE THE SOLUTION OF THE SECOND-ORPER PROBLEM IS

THE LINEAR SUPERPOSITION OF A SUM AND

A DIFFERENCE-FREQUENCY COMPONENTS.—

THE VELOCITY POTENTIAL OF A DIRECTIONAL SEASTATE REPRESENTED BY THE LINEAR SUPERPOSITION OF PLANE PROGRESSIVE WAVES OF VARIOUS FREQUENCIES AND WAVE HEADINGS TAKES THE FAMILIAR FORM:

$$\Phi_{1} = \mathbb{R}e \sum_{k=m}^{\infty} \frac{igA_{km}}{\omega_{k}} e^{\nu_{k}z-i\nu_{k}x\cos\theta_{m}-i\nu_{k}y\sin\theta_{m}} e^{\nu_{k}z-i\nu_{k}x\cos\theta_{m}-i\nu_{k}y\sin\theta_{m}}$$

$$\times e^{i\omega_{k}t+i\phi_{km}}$$

WHERE THE SUMMATIONS ARE OVER A SUFFICIENTLY LARGE NUMBER OF WAVE FREUVENCIES WK AND WAVE HEADINGS OM NECESSARY TO CHARACTERIZE THE AMBIENT SEASTATE

- THE PHASE ANGLES \$\pm_{km}\$ ARE SAMPLED FROM

 THE UNIFORM DISTRIBUTION OVER (-\pi, \pi) AND

 THE WAVE AMPLITUPES A_km ARE CHOSEN

 TO CONFORM TO THE AMBIENT WAVE SPECTRUM.
- ARE NEEDED WITH VERY LONG PERIODICITY.

UPON SUBSTITUTION OF \$\overline{P}_1 INTO THE RIGHTHAND SIDE OF THE SECOND-OPDER FREE
SURFACE CONDITION, SUM- AND DIFFERENCEFREQUENCY TERMS ARISE AS ILLUSTRATED ABOVE.

WE THEREFORE DEFINE THE YET UNKNOWN SECOND-ORDER POTENTIAL AS FOLLOWS:

$$\Phi_2 = \mathbb{R}e \left\{ \varphi_2^+ e^{i(\omega_{\kappa} + \omega_{\ell})t} + \varphi_2^- e^{i(\omega_{\kappa} - \omega_{\ell})t} \right\} \cdot -$$

SO THE PRINCIPAL TASK OF SECOND-OPPER
THEORY IN THE ABSENCE OF FLOATING BODIES
IS TO DETERMINE THE COMPLEX SECOND-OPDER
PUTENTIALS Ψ₂⁺ AND Ψ₂.

THEY SATISFY SECOND-OPDER FREE-SURFACE CONDITIONS STATED BELOW. USE IS HADE OF THE FOLLOWING IDENTITY SATISFIED BY REGULAR PLANE PROGRESSIVE WAVE COMPONENTS:

$$\frac{d}{dz} \left(\frac{\partial^2 \phi_1}{\partial t^2} + g \frac{\partial \phi_1}{\partial z} \right) = 0, \quad \text{ANY } \geq 0$$
(VERIFY!)

MAKING USE OF THE ABOVE IDENTITY IT IS EASY TO SHOW THAT:

$$-\Omega^{-2} \varphi_z^{-} + g \frac{\partial \varphi_z}{\partial z} = -i \Sigma \nabla \varphi_{1km} \nabla \varphi_{2ln}^*$$

$$= -i \Sigma \nabla \varphi_{1km} \nabla \varphi_{2ln}^*$$

WHERE ψ_{1km} AND ψ_{2ln} ARE THE COMPLEX VELOCITY POTENTIALS OF THE REGULAR PLANE PROGRESSIVE WAVES THE AMBIENT SEASTATE CONSISTS OF.

IT FOLLOWS THAT φ_2^{\pm} EACH DEPEND ON 4 INDICES, TWO FOR THE FREQUENCIES ω_{κ} 2 We AND TWO FOR THE RESPECTIVE HEADINGS Θ_m AND Θ_{ℓ} .—

THE SOLUTION OF THE ABOVE FORCED FREE

SURFACE PROBLEMS TOGETHER WITH $\nabla^2 \varphi_z^{\pm} = 0$ IN THE FLUID DOHAIN, IS A STRAIGHT FORWARD

EXERCISE IN FOURIER THEORY (LEFT AS AN

EXERCISE). THE SOLUTIONS FOR φ_z^{\pm} ARE:

WHERE:

THE REAL SECOND-OPDER POTENTIAL FOLLOWS BY QUADRUPLE SUMMATION OVER ALL PAIRS OF FREQUENCIES AND WAVE HEADINGS AND IS NOT STATED HERE.—

- A NUMBER OF SPECIAL CASES ARE NOTEWORTHY
 TO DISCUSS SINCE THEY CONVEY THE NEW
 PHYSICS INTRODUCED BY THE SECOND-ORPER
 POTENTIALS.
- ALL EFFECTS DISCUSSED BELOW A RE ADDITIVE

 TO THE LINEAR SO LUTION BY VIRTUE OF

 PERTURBATION THEORY AND OF O (AxAe)=O(A²)

 AN IN DEPTH DISCUSSION OF PERTURBATION THEORY

 ITS EXTENSIONS AND LIMITATIONS IN DEEP AND

 SHALLOW WATERS IS PRESENTED IN ME1.

SPECIAL CASES

Om = On = O: UNIDIRECTIONAL WAVES

xe-iN-(xcos d+ysind)+i(qx-qe)

WHERE:

- · VERIFY THAT IN-1 \$ 52-2/9.
- · IN THE LIMIT WK = WE VERIFY THAT 42 =0

SO THE SECOND-ORDER POTENTIAL IS IDENTICALLY ZERO IN UNIDIRECTIONAL WAVES OF THE SAME FREQUENCY.

- VERIFY THAT THIS IS NOT HOWEVERTHE CASE
 FOR THE SECOND-ORDER WAVE ELEVATION AND
 SECOND-ORDER PRESSURE.
- DERIVE AS AN EXERCISE THE SECOND-ORDER

 WAVE ELEVATION WHEN $W_k = W_l = W_l$ AND

 SHOW THAT IT CONTRIBUTES A CORRECTION TO

 THE LINEAR SINUSOILAL SOWTION WHICH PRODUCES

 HORE STEEPNESS AT THE CRESTS AND LESS AT TRIVYHS. -

CARRYING THE PERTURBATION SOLUTION WHEN WK = WE = W TO ARBIRTRARILY HIGH ORDER (IT HAS BEEN APPLIED NUMERICALLY WITH OVER 100 TERMS!) THE FAMOUS SOLUTION BY STOKES IS RECOVERED:

STOKES WAVES OF LIMITING STEEPNESS
THE CRESTS IN THE LIMIT BECOME CUSPED WITH
AN ENCLOSED ANGLE OF 120° AND THE
LIMITING VALUE OF THE H/X RATIO IS
ABOUT 1/7.

- SO TO THE EXTENT THAT PERIODIC WAVES
 OF THIS FORM CAN BE CREATED OR OBSERVED
 THESE LIMITING PROPERTIES ARE USEFUL TO
 REMEMBER AND KNOW THEY CAN BE OBTAINED
 BY PERTURBATION THEORY (ASWELL.)
- WHEN STOKES WAVES ARE REFLECTED OFF A WALL THE LIMITING ENCLOSED ANGLE IS 900

 $\Theta_m + \pi = \Theta_n = \Theta$

IN THIS CASE WE HAVE TWO WAVES PROPAGATING IN OPPOSITE DIRECTIONS.

IT CAN BE SHOWN THAT NOW:

$$\varphi_2 = 0$$

YET THE CORRESPONDING COMPONENTS OF THE WAVE ELEVATION AND PRESSURE ARE AGAIN
NOW-ZERO.

THE SUM-FREQUENCY POTENTIAL BECOMES:

$$\varphi_{2}^{+} = i \mathcal{L}^{+} A_{\kappa} A_{\ell} \frac{\omega_{\kappa} \omega_{\ell}}{g} \frac{e^{\frac{2}{2}|N^{-}|}}{|N^{-}| - \mathcal{L}^{+}/g} \times e^{iN^{-}(x\cos\theta + y\sin\theta) + i(\phi_{\kappa} + \phi_{\ell})}$$

WHERE N = Wk-We.

A NOTEWORTHY PROPERTY OF ψ_z^+ is that when $w_k = w_e$, or $N^- = 0$, The Velocity Potential and the Term in the second order hydrodynamic Pressure Proportional To $\partial \phi_z/\partial t$, Does not attenuate with Depth!

- THIS IS A NONLINEAR WAVE PROPERTY WHEN WAVES PROPAGATE IN OPPOSITE DIRECTIONS AND HAS BEEN MEASURED IN OCEAN PRESSURE FIELDS AT LARGE DEPTHS. IT HAS BEEN CONSIDERED RESPONSIBLE OF MICROSEISMS ON THE OCEAN FLOOR.
- THIS LACK OF ATTENDATION OF THE HYDRODYNAMIC SECOND-OPDER PRESSURE ALSO ARISES WHEN DIFFRACTION OCCURS OFF LARGE VOLUME FLOATING PLATFORMS, LIKE TLP'S. THE POSSIBLE RESULT IS A LARGE ENOUGH HIGH-FREQUENCY EXCITATION IN HEAVE & PITCH WHICH COVED CONTRIBUTE APPRECIABLY TO THE RESONANT RESPONSES OF TLP TETHERS.
- IN ORDER TO ASSESS THE FULL EFFECT OF
 SECOND-ORDER NONLINEARITIES ON FLOATING
 PLATFORMS (AND CERTAIN LARGE SHIPS THAT
 MAY UNERGO FLEXURAL VIBRATIONS) THE
 COMPLETE SOLUTION OF THE SUM-FREQUENCY
 SECOND-ORDER PROBLEM 13 NECESSARY.
- IN RANDOM WAVES, IT IS ALSO BELIEVED THAT

 THE THIRD-ORDER SOLUTION IS NECESSARY. THIS

 BEING A FORMIDABLE TASK, FULLY NON LINEAR

 SOLUTIONS NAY BE APPROPRIATE...