SECOND-OPDER WAVE FORCES

IN RESPONSE TO AN AMBIENT WAVE RECORD CONSISTING OF THE LINEAR SUPERPOSITION OF REGULAR WAVES, THE LINEAR WAVE FORCE ON A FLOATING STRUCTURE, OR ANY OTHER LINEAR EFFECT TAKES THE FORM:

$$f_1(t) = Re \sum_{k} A_k F_k(\omega_k) e^{i\omega_k t + i\phi_k}$$

THE COMPLEX FORCE TRANSFER FUNCTION FR (WK)
IS EVALUATED ANALYTICALLY OR NUMERICALLY
AS DESCRIBED EARLIER.

THE DEFINITION OF THE CORRESPONDING SECOND-ORDER FORCE (TO BE ADDED TO THE LINEAR ONE DEFINED ABOVE) HAY BE CAST IN THE FORM:

- THE SECOND-ORDER COMPLEX TRANSFER

 FUNCTIONS $F_{k\ell}^{(2)}^{\pm}(\omega_k,\omega_\ell)$ FOR THE SUM AND

 DIFFERENCE FREQUENCY PROBLEMS ARE

 THE PRINCIPAL QUANTITIES TO BE EVALUATED

 FROM THE SOLUTION OF THE SECOND-ORDER

 PROBLEM.
- FOR VALUES OF (K, R) THAT MAY BE AS LARGE

 AS 30-SO FOR REALISTIC SEASTATES AND FOR

 COMPLEX THREE-DIMENSIONAL STRUCTURES, THIS

 REPRESENTS A VERY SIGNIFICANT COMPUTATIONAL

 TASK. IT CAN BE REDUCED BY A FACTOR OF 2

 BY IMPOSING THE SYMMETRY CONDITION FOR

 HERMITIAN FORMS:

YET THIS LEAVES A SIGNIFICANT COMPUTATIONAL EFFORT WHICH IN ITS GENERALITY IS CARRIED OUT BY THREE-DIMENSIONAL PANEL METHODS SO LUING THE SUM- AND DIFFERENCE FREQUENCY RADIATION AND DIFFRACTION PROBLEMS AROUND FLOATING STRUCTURES.

IN THE DIFFERENCE-FREQUENCY PROBLEM A

USEFUL AND ACCURATE APPROXIMATION FOR $f_2(E)$ IS AVAILABLE KNOWN AS NEWMAN'S APPROXIMATION.

IN UNIDIRECTIONAL WAVES IT APPROXIMATES THE TRANSFER FUNCTION AS FOLLOWS!

WHERE DR(WR) IS THE MEAN DRIFT FORCE ON THE FLOATING PLATFORM AT FRECOUENCY WR WHICH IS EVALUATED WITH THE METHODS DISCUSSED EARLIER.

- THE RESULT OF THIS APPROXIMATION IS

 THAT THE SOLUTION OF THE SECOND-ORPER

 PROBLEM IS CIRCUMUENTED ENTIRELY! THIS

 IS IN PRACTICE VERY DESIRABLE DUE TO

 THE COMPLEXITY AND EFFORT IN SOLVING

 SECOND-ORDER PROBLEMS.
- THE EVALUATION OF THE RESULTING

 SECOND-ORDER FORCE RECORD \$\frac{7}{2}(t)\$ MAY BE

 CARRIED OUT USING FFT ROUTINES._

- IN PRACTICE IT IS NECESSARY TO BEABLE TO

 DETERMINE THE STATISTICAL PROPERTIES OF

 LINEAR AND SECOND-ORDER FORCES AND

 VESSEL RESPONSES.
- THIS MAY BE ACCOMPLISHED VIA DIRECT STHULATION
 IN THE TIME DOMAIN WHEN APPROPRIATE NUMERICAL
 METHODS ARE AVAILABLE OR BY SPECTRAL ANALYSIS
 IN COMBINATION WITH APPROXIMATE LINEAR
 RESPONSE MODELS.—
- ON OFFSHORE PLATFORMS, FOR EXAMPLE THE

 SLOW-DRIFT EXCITATION AND RESPONSE OF

 SEMISUBMERSIBLES, SPAR'S AND TLP'S, MOORED

 OR TETHERED TO THE OCEAN FLOOR, LINEAR

 RESPONSE MOPELS EXIST. THEY ARE EXCITED

 BY A SECOND-ORDER FORCE THE SPECTRAL

 DENSITY OF WHICH IS USEFUL TO KNOW.
- THE REMAINDER OF THIS SECTION DEFINES THE

 SPECTRAL DENSITY OF THE SUM AND DIFFERENCE

 FREQUENCY FORCE ON ANY FLOATING BODY.

LET S(W) BE THE SPECTRUM OF THE
AMBIENT SEASTATE ASSUMED UNIDIRECTIONAL

THE RELATION BETWEEN S(W) AND THE AMPLITUDES OF THE POLYCHROMATIC AMBIENT SEASTATE A; WAS GIVEN EARLIER AND REPEATED HERE

$$S(\omega_i)\Delta\omega = \frac{1}{2}A_i^2$$

FOR A SHALL FREQUENCY BAND DW CENTERED AROUND Wi.

LINEAR SYSTEM THEORY

GIVEN SCW) AND THE COMPLEX TRANSFER FUNCTION OF A LINEAR FORCE (OR OTHER EFFECT) F(W), THE SPECRAL DENSITY OF F IS GIVEN BY

$$S_F(\omega) = S(\omega) |F(\omega)|^2$$
.

THIS RESULT IS EXTENDED BELOW TO SECOND OPDER FORCES (AND MOHENTS).

SUH-FREQUENCY PROBLEM

THE SPECTRAL DENSITY OF A SUM-FREQUENCY FORCE WITH COMPLEX QUADRATIC TRANSFER FUNCTION $F^+(\omega_{\mathbf{k}},\omega_{e})$ IS GIVEN BY THE EXPRESSION (STATED HERE WITHOUT PROOF):

$$S_{F}^{(2)+}(\Omega) = 8 \int_{0}^{\Omega} S(\omega) S(\Omega - \omega) \times |F^{+}(\omega, \Omega - \omega)|^{2} d\omega.$$

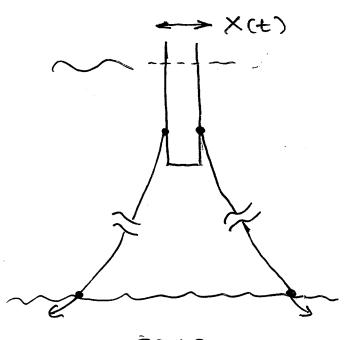
WHERE S(W) IS THE SPECTRUM OF THE AMBIENT SEASTATE

DIFFERENCE - FREQUENCY PROBLEM

■ THE CORRESPONDING EXPRESSION FOR THE DIFFERENCE-FREQUENCY FORCE IS:

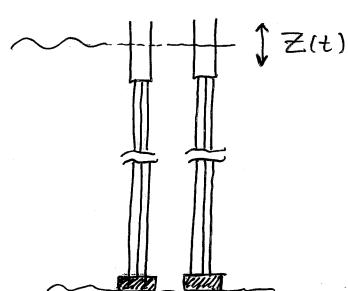
$$S_{F}(\Omega) = 8 \int_{\infty} S(\omega) S(\Omega - \omega) \times \left[F(\omega, \omega + \Omega) \right]^{2} d\omega$$

AND BY INVOKING NEWHAN'S APPROXIMATION:


$$S_F(\Omega) \cong 8 \int_0^\infty S(\omega) S(\Omega-\omega) \times$$

$$D(\omega) D(\omega+\Omega) d\omega.$$

ALSO IT IS USEFUL TO RECALL THE HEAN VALUE OF THE DRIFT FORCE IN AN AMBIENT SEASTATE WITH SPECTRAL DENSITY S(W):


$$\overline{D} = 2 \int_{0}^{\infty} S(\omega) D(\omega) d\omega$$
.

NONLINEAR RESPONSES OF COMPLIANT OFFSHORE PLATFORMS EXCITED BY SECOND ORDER EFFECTS

SPAR PLATFORM

X(t) = SLOW-DRIFT RESPONSE (LOW FREQUENCY)

TENSION LEG PLATFORM

Z(t) = SPRINGING OR

RINGING

RESPONSE

(HIGH FREQUENCY)

THE ABOVE TWO FIGURES ILLUSTRATE TWO

TYPICAL NONLINEAR RESPONSES OF COMPLIANT

OFFSHORE PLATFORMS DESIGNED TO OPERATE

IN WATERS OF LARGE DEPTH FOR THE EXTRACTION

OF OIL AND GAS FROM SUB-SEA RESERVOIRS

● SLOW-DRIFT RESPONSES X(t)

THESE ARE TYPICALLY LARGE AMPLITUDE
LOW- FREQUENCY RESPONSES OF THE ORDER
OF MINUTES EXCITED BY SECOND-ORDER
DIFFERENCE-FREQUENCY EFFECTS, AS WELL
AS TIME DEPENDENT WIND & CURRENTS.
THE LATTER ARE OF VISCOUS NATURE.

AN EFFECTIVE MODEL FOR XCt) 15:

$\bullet \quad (M+A) \stackrel{\circ}{\times} (t) + B \stackrel{\circ}{\times} (t) + C \times (t) = f_2(t)$

THE FORCING IN THE BIGHT-HAND SIDE HAS
BEEN STUDIED A BOVE AND ITS SPECTRAL
DENSITY IS ASSUMED KNOWN. THE REMAINING
COEFFICIENTS ARE SELECTED SO AS TO ALLOW
THIS LINEAR SYSTEM BE AS CLOSE TO REALITY. —

SPRINGING RESPONSES OF TLP'S Z(t)

THEY ARISE BECAUSE OF THE FLEXURAL RESPONSE
OF THE PRETENSIONED TETHERS OF TENSION
LEG PLATFORMS OPERATING IN WATERS OF
LARGE DEPTH. THEY ARE EXCITED PRIMARILY
BY SECOND-ORDER OR MORE EXTREME
NONUNEAR EFFECTS AND CAN ALSO BE
HODELED EFFECTIVELY BY A LINEAR SYSTEM:

THE ABOVE DESCRIPTION DOES NOT EXPLICITLY
RECOGNIZE IMACT TYPE LOADS KNOWN AS
RINGING THAT MAY BE ADDED TO THE RIGHTHAND SIDE.

- THE SPECTRAL DENSITY OF f₂^t(t) IS DETERMINED
 AS DISCUSSED ABOVE
- IN BUTH TYPES OF PROBLEMS IT IS ESSENTIAL

 TO MODEL PROPERLY AND IN CLUDE INTO A

 LINEAR DAMPING COEFFICIENT B (OR A

 NONLINEAR MORISON TYPE TERM) ALL EFFECTS

 THAT MAY INFLUENCE THE PLATFORM RESPONSE

 AT RESONANCE.—