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UPoN SUBSTITUTION (N THE MOMENTU M
FLUX FORMULA , WE OB7AIN ¢
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FOLLOWING AN APPLICATION OF THE VECTOR
THEOREM oF (AUSS. IN THE EXP‘fZESS‘IOW
ABOVE Y1 18 THE UNIT VECTOR POINTI NG OUT
OF THE VOLYHE VW), V,= 7.9 Awnp
Uy 1S THE OUTWARD RORHAL VELOQITY OF
THE SURFACE S£). _

THIS FORMULA (S OF CENTRAL M PORTA NIE
IN PSTENTI AL FLOW MARIVNE HYDRODYVAMILS

BE CAUSE THE RATE OF CHANGE OF THE

L IVEAR MOMEUTOHM DEFIVNED ABDVE S
TUST +THE FORCE ACTING ON THE FLuIp
VOLUME . WHEN TTS MEAN VALUE CAN
BE SHOWN TO VANISH , IMPORTANT FORCE
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MOMENTUM FLUX EXPRESSION l/uvoz_w.mc
THE HYDROSTATIC PRESSVRE :
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TaE INTEARAL OVER THE BODY SURFALE , ASSUMING
A FuLLY SUBMERQED BODY IS :
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RY VIRTUE OF THE VEcToR THEOREM OF GAUSS
THS 1S NONE OTHER THAN THE PRINAPLE
OF ARCHIMEDES !

WE MAY THEREFORE CONSIDER THE SECONMD

PART OF THE INTEG RAL INVOWING WAVE
EYFEcTs WODEPENVDEWTLY AND IN THE ABSEWCE

OF THE BOOY , ASSUHED FuLLY SUBMERGED.
I THE CASE OF A SORFACE PIERCING BopyY
AND IN THE FULLY NONLINEAR CASE MATTERS

ARE MORE QoM PLEX BUT TRACTA Bz /



ConSIDER THE APPLICATION OF THE MoMENTYM
CoNSERVATION THEOREH [N THE CASE OF A

SUBMERGED OR FOATING BODY IN STEEP
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HERE WE CONSIDER THE TWO-DIMENSICIVAL
CASE [N ORPER TD PRES ENT THE COWNCE DTS.
EXTENSIONS To THREE DIMENSIONS ARE

THEN TRIVIAL.

NOTE THAT UNLIKE THE ENERGY CONSERVATION
PRINCIPLE , THE MOMENTUHM CONSERVATION

THEOREM DERWEO ABOVE IS A VECTOR
TOENTITY WITH A HORIZONTAL AP A

VERTICAL CoMPOWENT.
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THIS 1S SIMPLY THE STATIC WEIECHT OF THE
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AND Spo . WITH NO WAVES PRESENT, THIS IS
SIMPLY THE WEIGHT OF THE OCEAN WATER
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CHANGE IN PRINCIPLE WHEWN W AVES ARE

PRESEVT AT LeasT wHen ST, 87 Are
PLACED SOFFICIENTLY FAR AWAY THAT

THE WANE AMPUTUDE BAS DECREASED T

TZERD . SO “Min PemwciPle " THIS TERM

BEINGOF HYORDSTATIC ORIGIN MAV Bg

‘GMO(aEO However

'T IS INPRINCY PLE
Moge

rZAv(ouAL'FO APpLY THE MOHENTUM



CONSERYA T/ION THEOREH OVER THE
i\ '

1"
LINEARI ZED VowurmeEe V (&) WHCH
(S PERFECTLY POSSt BLE WITHN THE
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THIS MOMENTUM FLUX FORMHUCA 1S OF

CENTRAL |MPORTANCE IN wWAVE-B00Y
INTERACTIONS AND HAS MANY 1M PO RTANT
APPLI CATIONS |, SOME OF (WHICH ARE

DISCUSSED BELOW™ .
® NOTE THAT THE MATHEMATICAL DERIVATIONS

INVOLNED IN 1TSS PRooF APPLY EXUALLY
WHEN THE VOLUHWE N~ AND (TS EwNcCLOSED
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O A Soulb Bounw DARY
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WE MAY THEREFORE RECAST THE MOMENTUH

CoeNSERYATION THEOREM IN THE FORM 3
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TH!S IS THE FUNDAMENTAL FORNMULA
UNDERLYING THE DEFINITION OF THE

MEAN WAYVE DRIFT FORCES ACTING ON
FloATivg BODIES. SUCH FoRcES ARE

VERY IMPORTAMT FoR STATIONARY
FoATIN G STRUCTURES AND CA W

BE EXPRESSED IN TERMS OF WNTEGRALS
OF WANE E#Edj‘ OVER ConTROL SU RTFACES
S T poHICH MAY BE LOCATED AT [NFI1vTY

THE EXTENSWON OF THE ABOVE FORMULA
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DURFACE AT INFIMTY. COM Mow CH C1CES
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O TWO VERTICAL PLANES PARALLEL To

THE AXIS OF PoRWARD MOTIO0N OF A SH/P



AecLICATIONS
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In WATER of FimiTE DEPTH THE w AVE

L
PARTICLE TRATECTORIES ARE BLUPTICAL
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THEREFORE, 1V FINITE DEPTH THE
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SO THE MEAN HORI2ONTAL MOMENTUNM
Ftux PUE TO A PtanNE PRPOGRESSIVE

WAVE (S AGAINST |TS DIRECTION OF

PROPA GATIGN AND ERUAL TD _4_'63,4?;
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WHAT IS THE MEAN HorR 2onTaL Fforce

ON THE WAVE MAYER ? Frem THE MOvENTUM

ConSERV A TION THEOREM THE MEAN Ho R1 2owTa

Flux of MoMENTU I TO THE LeFT MUST Frow
INTO THE wAyEHAxceﬁ. THIS MeEA N FLUY
TR ANSLATES

s AS SHOw
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0N THouT USING SoME BASIC Fruomw MeeqHAn 1657



TWoO OTHER WLLVSTRATI/IONS OF THE

MOMEUTUM FLUX PRINCIPLE ARE NOTEWORTHY

CONSIPER A CIRCULAR ORTECT N TWO PIMELS! 6LS
COTATING AT AN ANGULAR FREQUENLY 2O

UNDER A FREE SURFACE AND WITH A SMHALL

AMPLUTU PE . IN OTHER WORDS THE CIRALE

CENTER RSTATES AS. A FLLID PARTICLE |1 A REGULLAR
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IT ¢cAO BE SHowNn THAT AccorPInG To LINEAR
THEORY THIS RSTATIONAL MaTor CREATES
REGUL AR WAVES PROPACATING TO THE RIGH T

WITH NO WAVES PROPAGATING TO THE wafr /

WHAT )S THE MEAN HoPR |20 STAL FORCE
AcTIN G onv THE CcircLe ?

FroM THE MOMENTUM CONSERUVATION
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THE QRCLE MVST BE Euar T L | THos:

—

=_ _lpgand
E=—2053



@ DtAv (1853) HAC SHownN THAT REGLLR
PLANE PROGRESSIVE WAVES (N DEEP WATER
PRoOPAGATING OVER A ClRCtE FIXED vNDER
THE FREL SURFACLE ARE UNTIRELY TRANSMITTEP
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@ PLANE PROGRESSIVE WAVES IN GENERAL

DIRECTIONS.
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® WAJUES REFLECTING OFF A VERTICAL WALL

THIS 1S ONE OF THE FEW VERY 1MHPO RTANMNT

ANALY TICAL SOLUTIONS OF REGOLAR wWAVES
INTERACTING W1 TH SOUL D I1SOUVN DARIES SEEMN

W PRACTICS. THE OTHER IS (WAVE HARER

THEORY -
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THE CORRESPONDING VELOCITY POTEANITIALS
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O CEXERCISES

APPLY THE MOMENSTUH CO NSERY ATION
PRINCIPLE TO D ETERMINE THE HEAN

hoglzonTAL FeRce oW THE R REAK JATER.
Y YOUR RESOLT WITH THE AN Su) B2

UV ERIE
FeoM DIRECT PRESSURE (WG GRA TTITON

DE RIVE AN EXPRESSION o THE EnNERGY

DeENSITY oF THE STANDING twAVE . WHAT
?

|1 THE EvERGY FLLX S

Ex PRESSIOoN S FOT THE ENCEELY
y} EwERaGY FLULX AND MO MHE T

pCfeIvE

DESIT
FLux of BI-CHERO HATIC WAVES

PROPA GATING (N THE SAME DI RECT oN

\S: 3, Cpg(w‘.,{‘--—lk', x) + A, cosCw, t=lyx)

REREAT THE EYE RCUIE FOR W AUEYS
ProPAGATING (v THE ©PPOSITE DiIrRECToN S

T = A, cos(wt- ke, x) + A, cos (Wt +k.x)

ASSUME DEEP WA TER

bER WE THE STANDING it yAvE OFF
A BREA K W ATER FO A WAVE InetRENMT

AT AN ANGLE §3
9
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