MONENTUM FLUX IN PUTENTIAL FLOW

INVOKING EULER'S EQUATIONS IN INVISCID FLOW

$$\frac{\partial \vec{V}}{\partial t} + (\vec{V} \cdot \nabla) \vec{V} = -\frac{1}{6} \nabla P + \hat{g}$$

WE HAY RECAST THE RATE OF CHANGE OF THE MOMENTUM (= MOMENTUM FLUX) IN THE FORM

$$\frac{d\vec{h}(t)}{dt} = -\rho \iiint \left[\nabla (\mathcal{P}_{\rho} + gz) + (\vec{v} \cdot \nabla)\vec{v}\right] dv$$

$$+\rho \oiint \vec{v} U_n ds$$

$$s(t)$$

SO FAR NCH) IS AN ARBITRARY CLOSED TIME
DEPENDENT VOLUME BOUNDED BY THE TIME
DEPENDENTSURFACE SIE). HERE WE NEED
TO INVOKE AN IMPORTANT AND COMLEX VECTOR THM.

RECALL FROM THE PROOF OF BERNOULLI'S EQUATION THAT:

$$(\vec{\nabla} \cdot \vec{\nabla}) \vec{\nabla} = \nabla (\vec{\psi} \cdot \vec{\nabla}) - \vec{\nabla} \times (\vec{\nabla} \times \vec{\nabla})$$

BY VIRTUE OF GAUSS'S VECTOR THM:

WHERE IN POTENTIAL FLOW: $\vec{V} = \nabla \phi$

IN PUTENTIAL FLOU IT CAN BE SHOWN THAT:

6

$$\iint_{\Sigma(V,V)} \frac{1}{n} \, ds = \iint_{\Sigma(V)} \frac{\partial \phi}{\partial n} \, \nabla \phi \, ds$$

$$= \iint_{\Sigma(V)} V_n \, \nabla \, ds$$

$$= \iint_{\Sigma(V)} V_n \, \nabla \, ds$$

PROOF LEFT AS AN EXERCISE! JUST PROVE THAT FOR $\nabla^2 \phi = 0$;

$$\oint_{S} \frac{1}{2} (\nabla \phi \cdot \nabla \phi) \vec{n} \, ds = \oint_{S} \frac{\partial \phi}{\partial n} \nabla \phi \, ds .$$

UPON SUBSTITUTION IN THE MOMENTUM FLUX FORHULA, WE OBTAIN:

$$\frac{d\vec{n}}{dt} = -\rho \iint \left[\left(\frac{p}{p} + gz \right) \vec{n} + \vec{v} \left(v_n - v_n \right) \right] ds$$

FOLLOWING AN APPLICATION OF THE VECTOR
THEOREM OF GAUSS. IN THE EXPRESSION
ABOVE \vec{n} is the unit vector pointing out
OF THE VOLUME $\mathcal{V}(t)$, $V_n = \vec{n}$. $\nabla \phi$ AND U_n is the outward normal velocity of
The Surface S(t).

THIS FORMULA IS OF CENTRAL IMPORTANCE
IN POTENTIAL FLOW MARINE HYDRODYNAMICS
BECAUSE THE RATE OF CHANGE OF THE
LINEAR MOMEUTUM DEFINED ABOVE IS
TUST ± THE FORCE ACTING ON THE FLUID
VOLUME. WHEN ITS MEAN VALUE CAN
BE SHOWN TO VANISH, IMPORTANT FORCE
EXPRESSIONS ON SOLID BUNDARIES
FOLLOW AND WILL BE DERIVED IN WHAT
FOLLOWS.—

CONSIDER SEPARATELY THE TERM IN THE HOMENTUM FLUX EXPRESSION INVOLVING THE HYDROSTATIC PRESSURE:

$$\frac{d\vec{H}_H}{dt} = -\rho \iint g \vec{z} \vec{n}, \quad \text{where } S = S_F + S_F^{\pm} + S_B + S_{-A}$$

THE INTEGRAL OVER THE BODY SURFACE, ASSUMING A FULLY SUBMERGED BODY IS:

$$\frac{d\vec{H}_{H,B}}{dt} = -\rho \oint g = \vec{n} = \rho g + \vec{k} = \vec{B}$$

BY VIRTUE OF THE VECTOR THEOREM OF GAUSS
THIS IS NONE OTHER THAN THE PRINCIPLE
OF ARCHIMEDES!

WE MAN THEREFORE CONSIDER THE SECOND

PART OF THE INTEGRAL INVOWING WAVE

EFFECTS INDEPENDENTLY AND IN THE ABSENCE

OF THE BODY, ASSUMED FULLY SUBMERGED.

IN THE CASE OF A SURFACE PIERCING BODY

AND IN THE FULLY NONLINEAR CASE MATTERS

ARE MORE COMPLEX BUT TRACTABLE!

CONSIDER THE APPLICATION OF THE MOHENTUM
CONSERVATION THEOREM IN THE CASE OF A
SUBMERCED OR FLOATING BODY IN STEEP
WAVES:

HERE WE CONSIDER THE TWO-DIMENSIONAL CASE IN ORDER TO PRESENT THE CONCEPTS.

EXTENSIONS TO THREE DIMENSIONS ARE

THEN TRIVIAL.

NOTE THAT UNLIKE THE ENERGY CONSERVATION

PRINCIPLE, THE MOMENTUM CONSERVATION

THEOREM DERIVEO ABOVE IS A VECTOR

IDENTITY WITH A HORIZONTAL AND A

VERTICAL COMPONENT.

THE INTEGRAL OF THE HYDROSTATIC TERM OVER THE REMAINING SURFACES LEADS TO:

$$\frac{d\widetilde{H}_{H,S}}{dt} = -\rho \iint g Z \vec{n} ds = -\rho g \forall_{FLUID} \vec{k}$$

$$S_F + S^{\dagger} + S + S_{\infty}$$

THIS IS SIMPLY THE STATIC WEIGHT OF THE VOWNE OF FLOID BOUNDED BY SE, ST, ST AND SO. WITH NO WAVES PRESENT, THIS IS SIMPLY THE WEIGHT OF THE OCEAN WATER "COLUMN" BOWNDED BY S WHICH DOES NOT CONCERN US HERE. THIS WEIGHT DOES NOT CHANGE IN PRINCIPLE WHEN WAVES ARE PRESENT AT LEAST WHEN St, STARE PLACED SUFFICIENTLY FAR AWAY THAT THE WAVE AMPLITUDE HAS DECREASED TO ZERO. SO "IN PRINCIPLE" THIS TERM BEING OF HYDROSTATIC ORIGIN MAY BE IGNORED. HOWEVER, IT IS IN PRINCIPLE MORE RATIONAL TO APPLY THE HOHENTUM CONSERVATION THEOREM OVER THE

LINEARIZED VOLUME V_(t) WHICH

IS PERFECTLY POSSIBLE WITHIN THE

FRAMEWORK DERIVED ABOVE. IN THIS

CASE JMH IS EXACTLY ECRUAL TO

Lt

THE STATIC WEIGHT OF THE WATER
COLUMN AND CAN BE IGNORED IN
THE WAVE-BODY INTERACTION PROBLEM.

ON SF 3 P=Pa = O AND HENCE

ALL TERMS WITHIN THE FREE-SURFACE

INTEGRAL AND OVER SM (SEAFLOOR) CAN

BE NEGLECTED. IT FOLLOWS THAT:

$$\frac{d\vec{H}}{dt} = -P \iint_{S^{\pm}+S_{B}} [P_{e}\vec{n} + \vec{V}(V_{n}-U_{n})] ds$$

NOTE THAT THE FREE SURFACE INTEGRALS
ALSO VANISH FOR THE HORIZONTAL COMPONENT
SINCE THE HYDROSTATIC FORCE IS ALWAYS VERTICAL!

THIS MOMENTUM FLUX FORMUCA IS OF CENTRAL IMPORTANCE IN WAVE-BODY INTERACTIONS AND HAS MANY IMPORTANT APPLICATIONS, SOME OF WHICH ARE DISCUSSED BELOW.

NOTE THAT THE MATHEMATICAL DERIVATIONS INVOLVED IN ITS PROOF APPLY EQUALLY WHEN THE VOLUME V AND ITS ENCLOSED SURFACE ARE SELECTED TO BE AT THEIR LINEARIZED POSITIONS. IN SUCH A CASE IT IS ESSENTIAL TO SET Un = 0 AND RECALL THAT ON Z=0, P=0 AND Vn +0. LET THE MATH TAKE OVER AND SUGGEST THE PROPER EXPRESSION FOR THE FORCE IN THE FULLY NONLINEAR CASE, Un 70 ON SF AND P=0 on SF!

ON A SOLID BOUNDARY:

$$\bigcup_{n} = \sqrt{n}$$

AND

WITH R POINTING INSIDE THE BODY.

WE HAY THEREFORE RECAST THE MOMENTUM

CONSERVATION THEOREM IN THE FORM:

$$\overrightarrow{F}_{B}(t) = -\frac{d\overrightarrow{H}}{dt} - \rho \iint \left[\gamma_{e} \overrightarrow{n} + \overrightarrow{V} (v_{n} - v_{n}) \right] ds$$

WHERE S + ARE FLUID BOUNDARIES AT SOME DISTANCE FROM THE BODY.

IF THE VOLUME OF FLUID SURROUNDED BY
THE BODY, FREE SURFACE AND THE SURFACES
SI DOES NOT GROW IN TIME, THEN THE
MOMENTUM OF THE ENCLOSED FLUID CANNOT
GROW EITHER, SO M(E) 13 A STATIONARY
PHYSICAL QUANTITY.

IT IS A WELL KNOWN RESULT THAT THE

MEAN VALUE IN TIME OF THE TIME DERIVATIVE

OF A STATIONARY QUANTITY IS ZERO. SO:

$$\frac{1}{\frac{1}{4t}} = 0$$

PROOF:

$$\frac{dF}{dF} = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} dF(T) dT$$

SINCE F(±T) MUST BE BOUNDED FOR

A STATIONARY SIGNAL F(t), IT FOLLOWS

THAT dF/dt -> 0.

TAKING HEAN VALUES, IT FOLLOWS THAT!

$$\frac{1}{F_B(t)} = -\rho \iint \left[\frac{1}{V_p \vec{n}} + \vec{\nabla} (v_n - v_n) \right] ds$$

THIS IS THE FUNDAMENTAL FORMULA

UNDERLYING THE DEFINITION OF THE

MEAN WAVE DRIFT FORCES ACTING ON

FLOATING BODIES. SUCH FORCES ARE

VERY IMPORTANT FOR STATIONARY

FLOATING STRUCTURES AND CAN

BE EXPRESSED IN TERMS OF INTEGRALS

OF WAVE EFFECTS OVER CONTROL SURFACES

S & WHICH MAY BE LOCATED AT INFINITY

THE EXTENSION OF THE ABOVE FORMULA

FOR FB IN THREE PIMENSIONS IS TRIVIAL.

SIMPLY REPLACE S + BY So, A CONTROL

SURFACE AT INFIMITY. COMMON CHOICES

ARE A VERTICAL CYLINDRICAL BOUNDARY

OR TWO VERTICAL PLANES PARALLEL TO

THE AXIS OF FORWARD MOTION OF A SHIP.

APPLICATIONS

MEAN HORIZONTAL HOMENTUM FLUX

DUE TO A PLANE PROGRESSIVE WAVE

EVALUATE THE MOHENTUM FLUX ACROSS S +:

$$\frac{dH_{x}}{dt} = -\int_{-H}^{3} (p + \rho u^{2}) dz$$

$$p = -\rho \frac{\partial \Phi}{\partial t} - \frac{1}{2} \rho (u^{2} + v^{2}) - \rho gz \quad \text{(BERNOU2L)}$$

$$\frac{dH_{x}}{dt} = \rho \int_{-H}^{3} \left[\frac{\partial \Phi}{\partial t} + \frac{1}{2} (v^{2} - u^{2}) + gz \right] dz$$

$$= \rho \left(\int_{-H}^{0} + \int_{0}^{3} \right) \left[\frac{\partial \Phi}{\partial t} + \frac{1}{2} (v^{2} - u^{2}) + gz \right] dz$$

TAKING MEAN VALUES IN TIME AND KEEPING TERMS

$$\frac{d Mx}{dt} = \rho S(t) \frac{\partial \phi}{\partial t} + \frac{1}{2} \rho \int (v^2 u^2) dz + \frac{1}{2} \rho g S^2$$

INVOKING THE LINEARIZED DYNAMIC FREE SURFACE CONDITION:

$$\left. \frac{\partial \phi}{\partial t} \right|_{z=0} = -95$$

IT FOLLOWS THAT: $\frac{d}{dt} = -\frac{1}{2} pg 3^{2}(t) + \frac{1}{2} p \int (v^{2}u^{2}) dz$

IN DEEP WATER $V^2 = U^2$ AND THE SECOND TERM IS IDENTICALLY ZERO, SO

$$\frac{1}{\frac{dMx}{dt}} = -\frac{1}{2}pg \frac{1}{5^2(t)} = -\frac{1}{4}pgA^2$$

PARTICLE TRAJECTORIES ARE ELUPTICAL

WITH THE MEAN HORIZONAL VELOCITIES LARGER THAN THE MEAN VERTICAL VELOCITIES SOS

$$\overline{V}_{H}^{2} < \overline{U}_{H}^{2}$$

THEREFORE, IN FINITE DEPTH THE
MODULUS OF THE MEAN MOMENTUM FLUX
IS HIGHER THAN IN DEEP WATER FOR THE
SAME A.

SO THE HEAN HORIZONTAL MOMENTUM

FLUX PUE TO A PLANE PROGRESSIVE

WAVE IS AGAINST ITS DIRECTION OF

PROPAGATION AND EQUAL TO $-\frac{1}{4}egA^{2}$.

D CONSIDER A WAVEHAKER SHOWN IN THE FIGURE GENERATING A WAVE OF AMPLITUDE A AT INFINITY:

WHAT IS THE MEAN HORIZONTAL FORCE
ON THE WAVE MAKER? FROM THE MOMENTUM
CONSERVATION THEOREM THE MEAN HORIZONTAL
FLUX OF HOHENTUN TO THE LEFT MUST FLOW
INTO THE WAVENAKER. THIS MEAN FLUX
TRANSLATES INTO A MEAN HORIZONTAL
FORCE IN THE SAME DIRECTION, AS SHOWN
IN THE FIGURE. NOT AN EASY CONCLUSION
WITHOUT USING SOME BASIC FLUID MECHANICS!

TWO OTHER ILLUSTRATIONS OF THE
MOMENTUM FLUX PRINCIPLE ARE NOTEWORTHY:

CONSIDER A CIRCULAR OBJECT IN TWO DIMENSIONS

ROTATING AT AN ANGULAR FREQUENCY W

UNDER A FREE SURFACE AND WITH A SHALL

AMPLITUDE. IN OTHER WORDS THE CIRCLE

CENTER ROTATES AS. A FLUID PARTICLE IN A REGULAR

MAUE

A=0

A=0

A, W

$$F = \overline{L}$$

$$= -\frac{1}{4} egA^2$$

IT CAN BE SHOWN THAT ACCORDING TO LINEAR THEORY THIS ROTATIONAL MOTION CREATES

REGULAR WAVES PROPAGATING TO THE RIGHT WITH NO WAVES PROPAGATING TO THE LEFT!

WHAT IS THE MEAN HORIZONTAL FORCE

ACTING ON THE CIRCLE?

FROM THE MOMENTUM CONSERVATION
PRINCIPLE THE MEAN FORCE FACTING ON
THE CIRCLE MUST BE EQUAL TO [], THUS:

DEAN (1953) HAS SHOWN THAT REGULAR
PLANE PROGRESSIVE WAVES IN DEEP WATER
PROPAGATING OVER A CIRCLE FIXED UNDER
THE FREE SURFACE ARE UNTIRELY TRANSHITTED
WITH A PHASE SHIFT

 $S_1 = A\cos(\omega t - kx)$ $S_2 = A\cos(\omega t - kx + q)$ $S_2 = A\cos(\omega t - kx + q)$ $S_3 = A\cos(\omega t - kx + q)$ $S_4 = A\cos(\omega t - kx + q)$

IN OTHER WORDS THE WAVE REFLECTION IS

ZERO. NOTE THIS IS THE ONLY BODY IN

2 DIMENSIONS WITH THIS PROPERTY, REFLECTION

IS NON-ZERO IN FINITE DEPTH FOR ALL

KNOWN BODIES. SHOW BY APPLYING THE

MOMENTUM CONSERVATION PRINCIPLE THAT

THE MEAN HORIZONTAL FURCE

F=0 ._

DIRECTIONS.

FREE SURFACE ELEVATION :

J= A cos (wt-kxcosp-kysing)

=A Re {e-ikxcosp-ikysing+iwt}

VELOCITY POTENTIAL IN FINITE DEPTH

WAVES REFLECTING OFF A VERTICAL WALL
THIS IS ONE OF THE FEW VERY IMPORTANT
ANALYTICAL SOLUTIONS OF REGULAR WAVES
INTERACTING WITH SOUD BOUNDARIES SEEN
IN PRACTICE. THE OTHER IS WAVE HAKER
THEORY

LET. THE INCIDENT WAVE ELEVATION BE:

AND THE REFLECTED BE:

WHERE THE SIGN OF THE e ikx TERM HAS BEEN REVERSED TO DENOTE A WAVE PROPAGATING TO THE LEFT. AR CAN BE COMPLEX IN ORDER TO ALLOW FOR PINASE DIFFERENCES.—

THE CORRESPONDING VELOCITY PUTENTIALS

ARE:

$$\Phi_z = \text{Re} \left\{ \frac{igAz \cosh K(2+H)}{\omega} e^{-ihx+i\omega t_j} \right\}$$

$$\Phi_R = \text{Re} \left\{ \frac{igAR \cosh K(2+H)}{\omega} e^{ikx+i\omega t_j} \right\}$$

ON X = 0:

$$\frac{\partial}{\partial x} (\phi_{E} + \phi_{R}) = 0$$

THE RESULTING TOTAL VELOCITY PUTENTIAL IS:

$$\varphi = \varphi_{I} + \varphi_{R} = \mathbb{R}e \left\{ \frac{isA}{\omega} \frac{\cosh K(2+H)}{\cosh kH} e^{i\omega t} \right\}$$

$$\left\{ e^{ikx} + e^{-ikx} \right\}$$

$$= 2A \mathbb{R}e \left\{ \frac{ig}{\omega} \frac{\cosh K(2+H)}{\cosh kH} \cos kx e^{i\omega t} \right\}$$

THE RESULTING STANDING-WAVE ELEVATION IS:

- APPLY THE MOHENTUM CONSERVATION

 PRINCIPLE TO DETERMINE THE HEAN

 HORIZONTAL FORCE ON THE BREAKWATER.

 UERIFY YOUR RESULT WITH THE ANSWER

 FROM DIRECT PRESSURE INTEGRATION
- DERIVE AN EXPRESSION FOR THE ENERGY
 DENSITY OF THE STANDING WAVE. WHAT
 IS THE ENERGY FLUX?
- DERIVE EXPRESSIONS FOR THE ENERGY
 DENSITY, ENERGY FLUX AND MOMENTUM
 FLUX OF BI-CHROHATIC WAVES
 PROPAGATING IN THE SAME DIRECTION

5= A, cos(w,t-K,x) + A2 cos(w2t-k2x)

REREAT THE EXERCUSE FOR WAVES

PROPAGATING IN THE OPPOSITE DIRECTIONS

J=A, cos(w,t-k,x)+A2cos(w2t+k2x) ASSUME DEEP WATER

- DERIVE THE "STANDING" WAVE OFF A BREAKWATER FOR A WAVE INCIDENT AT AN ANGLE B.