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2.25 Advanced Fluid Mechanics 

Problem 4.25 
This problem is from “Advanced Fluid Mechanics Problems” by A.H. Shapiro and A.A. Sonin 

Water flows from a large reservoir through a very long pipe under constant head h. When the valve is slowly 
closed, the head h remains constant, but the volume flow rate is reduced. 

a) Neglecting friction and compressibility of the water, demonstrate that the gage pressure just upstream of 
the valve at any instant during the closure period is given approximately by 

� � 

p = ρ gh − 
Q2 

2A2 
− 

L 
A 

dQ 
dt 

(4.25a) 

where A is the cross-sectional area of the pipe. 

b) Suppose the “valve” is a short, frictionless nozzle with variable exit area Ae(t). At t < 0, prior to valve 
actuation, a steady flow takes place with Ae = A. It is desired to program the valve closure such that the 
volume flow rate decreases linearly in time from its initial steady-state value to zero in a period of τ . Show 
that this requires that Ae(t) be programmed such that 

� �� � �� �
Ae(t) t L 2 

= 1 − 1 + 

1
2 
�− 1

2 

(4.25b)
A τ τ gh 
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Solution:
 

Valve

Q(t)

L

g

h

1

2

a) If we assume that the flow is inviscid, irrotational and incompressible, but not steady, we may apply the 
unsteady Bernoulli equation along a streamline between stations 1 and 2, which takes the form 

s2 � � � �∂v 1 1 
ρ ds + p2 + ρv2 + ρgz2 − p1 + ρv2 + ρgz1 = 0 (4.25c)2 1 

s1 ∂t 2 2 

We define the gage pressure p = p2 − p1. Additionally, we recognize that fluid speed at station 1 is essentially 
zero because h remains constant in time since the reservoir area is much greater than the pipe area A. Finally 
we note that the speed of the fluid in the horizontal pipe is spatially uniform along its length, L, but changes 
in time, so we obtain 

∂v 1 
ρ L + p + ρv2

2 − ρgh = 0 (4.25d)
∂t 2

The speed at station 2 is related to the volume flow rate by v2 = Q/A, so when we substitute in this result 
into Eq. (4.25d) and rearrange this result, we find 

Q2 L dQ 
p = ρ gh − − (4.25e)

2A2 A dt 

b) Consider now a third station, station 3, which is just downstream of the valve where the pressure is once 
again atmospheric, such that p3 = p1. Our objective is to have a volumetric flow rate Q(t) that decreases 
linearly in time to zero in a period τ , therefore 
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Q(t) = Q0

(
t

1−
τ

)
(4.25f)

where Q0 is the initial steady state flow rate before the valve begins to close. This flow rate, Q0, is determined
by applying the steady Bernoulli equation from station 1 to station 3, and it is

Q0 =
√

2ghA (4.25g)

following the same assumptions of negligible velocity at station 1, as before.

To proceed, we assume that the flow between stations 2 and 3 is pseudo-steady and apply the steady Bernoulli
equation between each point (a justification for this assumption will be offered later):

1 1
p2 − p3 = ρv2

3 − ρv2

2 2 2 (4.25h)

Since p2 − p3 is equal to the gage pressure, we may replace it with Eq. (4.25e) and rewrite speeds in terms
of volumetric flow rates to obtain

(
Q2 L dQ

)
1
(
Q2 Q2

ρ gh−
2A2

− = ρ
A dt 2 A2

e

−
A2

)
(4.25i)

which simplifies to

L dQ 1 Q2

gh− = (4.25j)
A dt 2 A2

e

Now we may substitute for Q in Eq. (4.25i) with (4.25f) and its derivative and (4.25g) to obtain

2

2 2 1 t
L 1 1 ghA τ

gh
−

−
A

(
−
τ

√
2ghA

)
=

2

(
A2
e

)
(4.25k)

This expression may be rearranged to obtain our final result in the desired form

1
2 − 1

2
Ae(t) t

τ

)[
1 +

(
L

τ

)(
2

=
A

(
1−

gh

) ]
(4.25l)

Returning now to our earlier assumption that the flow between stations 2 and 3 was steady, we consider
the relative magnitude of the unsteady term in the unsteady Bernoulli equation based on our results from
the pseudo-steady assumption, were we to have included it in Eq. (4.25h). The unsteady Bernoulli equation
between stations 2 and 3 is:
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p2 − p3 = ρ

∫ s3 ∂v 1 1
ds+ ρv2

s2 ∂t 2 3 − ρv2

2 2 (4.25m)

We must compare the relative magnitudes of the unsteady term with the difference between the square of
the velocities. If we assume that the characeristic velocity in the unsteady term is v3 = Q(t)/Ae(t), then

ρ

∫ s3 ∂v d Q(t)
ds = ρ

s2 ∂

(
(4.25n)

dt Ae(t)

)
l

t

where l is the length of the nozzle. Since Q(t) ∼ (1 − t/τ) and Q(t)Ae(t) ∼ (1 − t/τ), d
dt = tAe(t) 0 for all

and its exclusion from Eq. (4.25h) is clearly justified. If, on the other hand, we were to

(
have tak

)
en v2 as the

characteristic velocity in the integral, then

∫ s3 ∂v d
(
Q(t) Q

√
h

ρ ds = ρ l = 0 2g
ρ l = ρ l (4.25o)

s2 ∂t dt A

)
−

(
Aτ

)
−

(
τ

)

The difference between the square of the velocities is

1
ρ(v2

2 3 − v2 1
2) = ρ

2

[( 2 2
Q0(1− t

τ ) Q0(1− t
τ )

1 (4.25p)
A(1− t

τ )[1 + L
τ ( 2

gh ) 2 ]−
1
2

)
−

(
A

) ]

This result simplifies to

1 2
1
ρ(v2

3 − v2 L 2 2
t

2 2) = ρgh

[
1 +

τ

(
1

gh

)
−

(
−
τ

) ]
(4.25q)

This term will be smallest at t = 0, when it equals

1
ρ(v2

3 − v2
2)t=0 = ρ

(√
2gh

)
L (4.25r)

2 τ

Comparing the magnitudes of Eq. (4.25o) and (4.25r), we conclude that provided L � l, the exclusion of
the unsteady term from Eq. (4.25h) is justified.
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