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2.25 Advanced Fluid Mechanics 

Problem 4.27 
This problem is from “Advanced Fluid Mechanics Problems” by A.H. Shapiro and A.A. Sonin 
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Consider a bubble of high-pressure gas exploding in an incompressible liquid in a spherically-symmetrical 
fashion. The gas is not soluble in the liquid, and the liquid does not evaporate into the gas. At any instant 
R is the radius of the bubble, dR/dt is the velocity of the interface, pg is the gas pressure (assumed uniform 
in the bubble), u is the liquid velocity at the radius r, and p∞ is the liquid pressure at a great distance from 
the bubble. Gravity is to be neglected. The following questions pertain to the formulation of an analysis 
which will lead to the details of the pressure and velocity distributions and to the rate of bubble growth in 
the limit of inviscid liquid flow. 

(a) Show that at any instant 

R2 dR 
u = (4.27a) 

r2 dt 

(b) Show that the rate of growth of the bubble is described by the equation 
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ρ 
(4.27b) 

where σ is the surface tension at the gas-liquid interface. 

(c) What additional information or assumptions would be necessary in order to establish the bubble radius 
R as a funciton of time? Explain how you would use this information. 
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Solution:
 

R(t)
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(a) If the control volume is chosen correctly, it is possible to determine u using either Form A or B of the 
integral mass conservation equation, however, here we will use Form A. Form A is written 

  
d 

ρdV + ρ(u − uCS) · ˆ (4.27c)ndA = 0 
dt CV CS 

We choose a control volume taking the shape of a hollow sphere whose inner control surface, CS1, has radius 
R(t) and whose outer control surface, CS2, has arbitrary radius r. Furthermore, the internal surface CS1 

is selected to move radially outward at exactly the rate of expansion of the bubble dR/dt. Let us first 
evaluate the volume integral term, by noting that the density is constant and the total volume of our CV is 

4V = π(r3 − R(t)3). Accordingly, 3 

   d 4 d dR 
ρdV = πρ r 3 − R(t)3 = −4πR2ρ (4.27d)

dt CV 3 dt dt 

Next, we evaluate the surface flux integrals. At CV1 we note that the liquid velocity is exactly equal to the 
velocity of the gas-liquid interface, dR/dt which is also the speed at which CV1 is moving, hence there is no 
relative velocity between the liquid and CV1 so u − uCS = 0, and

 
ρ(u − uCS) · ˆ (4.27e)ndA = 0 

CS1 

Conversely, at CS2, r may be arbitrary, but it is fixed in time so that uCS2 = 0, and provided R < r, then 
the liquid velocity at this r-value is u(r, t), so the surface flux integral at CS2 is

 
ndA = ρu(r, t)êr · êr4πr2 = 4πr2ρu(r, t) (4.27f) ρ(u − uCS) · ˆ

CS2 

Substituting Eq. (4.27d), (4.27e) and (4.27f) into Eq. (4.27c), we find 

−4πR2ρ
dR 

+ 4πr2ρu(r, t) = 0 (4.27g) 
dt 
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and hence

u(r, t) =
R2

r2
dR

dt
(4.27h)

(b) Neglecting gravity, and provided the flow is inviscid and irrotational, we may apply the unsteady Bernoulli
equation along a streamline with station 1 located just on the liquid side of the gas-liquid interface and station
2 located at a great distance from the bubble where p = p∞ and the liquid velocity is approximately zero,
u2 ≈ 0. The unsteady Bernoulli equation along this streamline is

∫ s2 du
ρ ds+ p ρu2

2 = p1 + 1 (4.27i)
s1 dt 2

The pressure p1 differs from the pressure in the bubble pg by the Laplace pressure such that p1 = pg − 2σ
R(t) ,

where σ is the surface tension of the gas-liquid interface. Substituting our result for u in Eq. (4.27h) into
Eq. (4.27i) and setting ds = dr, s1 = R(t) and s2 = r , we obtain∞

∫ 2
r∞ d

(
R2 dR 2σ 1 dR

ρ

)
dr + p = p∞ g (4.27j)

)

− + ρ
r2R(t dt dt R 2

(
dt

)

Expanding the time derivative in the integrand, we find

∫ 2
r∞
(

2R dR
ρ

R(t r2)

(
dt

)
R2 d2R

+
r2 dt2

) 2
2σ 1

dr + p = p∞ g − + ρ
R 2

(
dR

(4.27k)
dt

)

Completing the integral, we obtain

( ( )2 )∣∣r=r 2
2R dR R2 d2

∞
R 2

ρ −
r dt

−
r dt2

∣∣∣ σ 1 dR
+ p = p∞ g − + ρ (4.27l)

R 2 dt
r=R(t)

( )

which reduces to
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ρ

(
2

( 2
dR
)2

d2R 2σ 1 dR
+R ρ

2

)
+ p = p∞ g − +

dt dt R 2

(
dt

)
(4.27m)

Finally, we rearrange this result to obtain the governing equation for R in its desired form

d2R 3 p
R +

(
dR
)2

2σ p
+ = g − ∞ (4.27n)

dt2 2 dt ρR ρ

(c) Since our governing equation, Eq. (4.27h) is second order in time, we require two initial conditions, such as
the initial bubble radius R0 and interfacial velocity dR/dtt=0. Furthermore, we require a relationship between
bubble pressure pg and bubble radius R(t), which could be obtained from the ideal gas law, p = ρRT and
some reasonable assumption about the nature of the bubble expansion (e.g. adiabatic or isothermal).

�

Problem Solution by TJO, Fall 2010
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