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MASSACHUSETTS INSTITUTE OF TECHNOLOGY 
DEPARTMENT OF MECHANICAL ENGINEERING 

CAMBRIDGE, MASSACHUSETTS 02139 
2.29 NUMERICAL FLUID MECHANICS — SPRING 2015 

 
Problem Set 2 

Issued: Monday, February 23, 2015                       Due: Wednesday, March 4, 2015 

The goals of this Problem Set are to: (i) review vector calculus and conservations laws; (ii) learn and utilize 
methods for solving linear algebraic systems; and (iii) apply these methods to simple differential equations 
in fluid mechanics and heat transfer. 
 
Problem 1    (Modified from Chapra and Canale, Problems 9.10 and 9.11) 
For each of the following two systems of equations 
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a) Compute the determinants (use the function det() in MATLAB). 
b) Use Cramer’s rule to solve for the x’s (using a code, e.g. in MATLAB). 
c) Use Gauss elimination with (i) partial pivoting, then (ii) full pivoting, to solve for the x’s. Show 

the steps of the recursive computations. To do so, write a small MATLAB script (i.e. similar to the 
script given in class for 2-by-2 matrices, but extended to 3-by-3). 

d) Substitute your results back into the original equations to check your solution. 
 

Problem 2

Grading Note: Please provide your solutions either as hand-written/hard-copy solutions or by submitting 
via course website. MATLAB  codes should be submitted via course website. The bulk of the grades will be
given to detailed explanations and to algorithms and numerical schemes that capture the essence of the
numerical problems. We know that successful coding of numerical schemes can be time consuming and
prone to small errors. Such small errors or omissions in a code will not be heavily penalized. 

®

Do problems 10.12 and 10.15 of Chapra and Canale. 
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Problem 3   (Reference: Matrix Computations by Gene Golub and Charles Van Loan) 
Suppose we partition an n-by-n matrix A as follows 
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where A11 is r-by-r, A22 is (n− r)-by-(n −r) and A21 and A12 of compatible dimensions. Assume that A11 is 
nonsingular and has a LU factorization. Suppose that A21 is eliminated row by row by applying r steps of 
Gauss elimination, the result of this process being:  
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Show that the bottom-right (n − r)-by-(n − r) block of the result, *
22A , is the matrix S defined by S = A22 − 

A21A11
−1A12, which is called the Schur complement of A11 in A. 

 
 
 
Problem 4 (Reference: Numerical Linear Algebra by Lloyd N. Trefethen and David Bau, III, and 
Chapra and Canale) 
Gauss elimination can be used to compute the inverse A−1 of a nonsingular matrix , though it 
is not often necessary to do so. 

a. Describe a 3-steps algorithm (pseudo-code) to compute A−1 by solving a system of m equations using 
LU decomposition. Show that its asymptotic operation count is 8m3/3 flops.  

b. Taking advantage of the fact that L and U have zeros above and below the diagonal, respectively, and 
that I is diagonal (L, U and I are sparse matrices), describe a variant of your algorithm that would take 
advantage of sparsity in some of the steps of the algorithm and so reduce the asymptotic operation count 
to 2m3 flops. 

c. Suppose one wishes to solve n systems of equations Axj = bj. As seen in lecture, a block system AX = 
B with  is equivalent and can be efficiently solved. What is the asymptotic operation count 
(a function of m and n) for doing this (i) directly from the LU factorization applied to AX = B and (ii) 
with a preliminary computation of A−1? 

d. The following system of equations is designed to determine concentrations (the c’s in g/m3) in a series 
of coupled reactors as a function of the amount of mass input to each reactor (the right hand side in 
g/day), 

    15c1 - 3c2 - c3 = 3800 
    -3c1 + 18c2 - 6c3 = 1200 
    -4c1 –c2 +12c3 = 2350 

i. Solve this system of equations by LU decomposition without pivoting. 
ii. Determine the matrix inverse of this system and use it to determine the solution. 

iii. How much will the concentration in reactor 3 be reduced if the rate of mass input to reactors 1 
and 2 is reduced by 500 and 250 g/day, respectively?  

iv. If you had to compute the solution of part iii. by only using either the LU decomposition or the 
inverse of A (computed in part i. and part ii. above), will one of these approaches lead to a faster 
solution? 
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Problem 5: (Modified from Chapra and Canale, Problem 12.38) 
Linear algebraic equations often arise in the numerical solution of differential equations. Consider for 
example the following differential equation which derives from the energy balance along a thin fin (see 
figure),  
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where: T is temperature (°C), x is 
distance along the rod (m), h is a 
heat transfer coefficient between 
the fin and the ambient air (m-2), 
and Ta is the temperature of the 
surrounding air (°C). This is the 
‘fin equation’ for convective 
cooling of an extended surface.  
 
a) Develop an analytical solution 
for this equation. Solve for 
coefficients symbolically (you do not need to simplify your coefficients).  

b) Substitute the centered finite difference 
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differential fin equation. Re-arrange terms to have all known values on the right hand side (RHS) and all 
unknowns on the LHS. What are the coefficients in front of each unknown? You can provide your answer 
in terms of a “computational cell,” e.g. in a table similar to the following: 

 x x  x  x x  
Coefficient a1 a2 a3 

This gives the coefficients in the ‘A’ matrix for the interior nodes, where AT=b, with ‘A’ as the 
coefficient matrix, ‘T’ as the vector of temperatures, and ‘b’ as the RHS vector.  
 
c) Implement part b) in MATLAB using the linear system solver (lin_sys_solver.m) that we provide you 
(with appropriate tolerance). What is the name of the algorithm used in this lin_sys_solver.m?  
 
d) Plot your solution for a 20-m rod with Ta=5, T(x=0)=25, T(x=20)=100, and h=[0.4, 0.04, 0.02, 0.00001] 
using 6 nodes. For your plots, graph both the analytical solution (using a solid line) and the numerical 
solution [using markers, e.g. plot(Solution,’*’)]. You can either plot all the solutions on a single graph, or 
on four separate graphs.  
 
e) Briefly give a physical interpretation of the effect of the different values of h on the temperature 
profile? (A sentence or two will be fine, referring to your plots in part d). 
 
f) Examine the ‘A’ matrix you created and comment on its structure (MATLAB’s “spy” command may 
be useful here). How does it affect computations?  
 
g) Could you have used the Thomas algorithm for solving this problem? If yes, briefly discuss its cost in 
comparison to that of the algorithm used in lin_sys_solver.m. 
 
 
 
 
 

x

x=0 m 
x=20 m 

Ta=5 C 

T0=25C Tn=100C 
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Problem 6: Gradient Methods for Solving Linear Systems 
Consider the following system of linear algebraic equations: 
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a) Construct the equivalent optimization problem for the given system of linear algebraic equations (Ax = 
b) using the relation: 

1( ) ( )
2

T TQ  x x Ax x b  

b) Use the steepest descent gradient method to solve for x in the above optimization problem. How many 
iterations are required to obtain a solution that is accurate up to 2 decimal places? 
 
c) Compute the solution using the conjugate gradient method. How many iterations are required to obtain 
the exact solution? 
 
 
Problem 7: Vector Calculus Exercise 
a) Evaluate the divergence . v , the curl  v and the Newtonian viscous stresses xx and xy                   

(
2

. 2
3ij ij ije      u ) for the following two-dimensional velocity fields (where α is an arbitrary 

constant):     i) 0u y v     ii) u x v y       

Identify which field is irrotational ( 0 v ) or solenoidal ( . 0 v ). 
 
b) Prove the following vector identities. It is easiest if you utilize the index (Einstein) notation and the 
summation convention1. Several of these identities were utilized in lecture. They are often used in the set-
up of real (numerical) fluid mechanics problems. 

i) . ( ) 0  v  True for any vector v  (divergence of a curl) 
ii) ( ) 0    True for any scalar    (curl of a gradient) 
iii) 2 ( . ) ( )    v v v  This is another way to write the Laplacian 2 v  
iv) . ( ) . .     v v v  Divergence of the product of a scalar by a vector (chain rule) 
v) .( ) . .    u v u v v u  Divergence of vector-vector dyadic product (chain rule) 

 
c) Considering the intensive variable   (i.e. Φ per unit of mass), show using the Reynolds Transport 
Theorem and the continuity equation that, for a control volume CV fixed in an inertial frame, the following 
holds (another form of the Theorem): 

CM CV

D D
dV dV

Dt Dt


 
 
 
 
   

 
 
 
 
 
                                                 
1 A hand-out, Appendix A from Bird et al, “Summary of Vector and Tensor Notation, was provided in case you are 
not yet very familiar with these notations (see for example pg 719-726). 
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Problem 8 (Modified from Fluid Mechanics (4th) by Frank White, Problem 3.59) 
When a pipe flow suddenly expands from A1 to A2, low speed, low-friction eddies appear in the corners 
and the flow gradually expands to A2 downstream (see figure). 

 
i) Using the suggested control volume for incompressible steady flow and assuming that pp1 on the 

corner annular ring as shown, show that the downstream pressure is given by 2 1 1
2 1 1

2 2

(1 )
A A

p p V
A A

   . 

Neglect wall friction.  
 
ii) Compare your above result with the result obtained using the Bernoulli equation. Which one is more 
reasonable and why? 
 
 

 

 

CV 

Pressure ~ p1 

p2, V2, A2 
p1, V1, A1 
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