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MASSACHUSETTS INSTITUTE OF TECHNOLOGY 
DEPARTMENT OF MECHANICAL ENGINEERING 

CAMBRIDGE, MASSACHUSETTS 02139 
2.29 NUMERICAL FLUID MECHANICS — SPRING 2015 

 
Problem Set 3 

Issued: Wednesday, March 4, 2015         Due: Wednesday, March 18, 2015 

The goals of this Problem Set are to: (i) derive finite-difference schemes and utilize them in simple 
problems including differentiations from observations; and (ii) apply these schemes to solve differential 
equations in idealized fluid mechanics and heat transfer problems. 

 

Problem 1

2 2
1 2 3( ) , ( ) , ( ) sin(4 )x xf x e x f x e x f x x x     

 

 
Problem 2 (Modified from 24.13 of Chapra and Canale).  Bonus (not needed for full credit) 
Videoengiography is used to measure the blood flow and determine the status of circulatory 
function. In order to quantify the videoangiograms, blood vessel diameter and blood velocity are 
needed such that the total blood flow can be determined. One of your colleagues provides you 
with a densitometric profile taken from a videoangiogram of a blood vessel (see table), going 
through the center of the vessel. She tells you that you can estimate the edge of the blood vessel 
from these data if you can determine where the first derivative of the profile has extreme values.  

Grading Note: Please provide your solutions either as hand-written/hard-copy solutions or by submitting 
via course website. MATLAB  codes should be submitted via course website. The bulk of the grades will be
given to detailed explanations and to algorithms and numerical schemes that capture the essence of the
numerical problems. We know that successful coding of numerical schemes can be time consuming and
prone to small errors. Such small errors or omissions in a code will not be heavily penalized. 

®

Do problem 23.19 from Chapra and Canale with the following three functions:
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a) With the data provided in the table, estimate the position of two edges and so the diameter of 

the blood vessel. Use both O(h2) and O(h4) centered difference formulas and compare the 
results. 

b) If the relative error on the data is 5%, what is the “standard error estimate” for your two 
centered difference formulas? Based on the results you obtain, which centered difference 
scheme is adequate? 

 
 
Problem 3  Bonus (not needed for full credit) 

                 
                a) Do problem 24.13 from Chapra and Canale.
                b) If the relative error on the data is 5%, what is the “standard error estimate” for your 
                     two centered difference formulas? Based on the results you obtain, which centered
                     difference scheme is adequate? 
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Problem 4 (Modified from Lomax et al, Prob. 3.1-3.2) 
a) Derive a third-order finite-difference approximation to a first derivative in the form 

 2 1 1
1

j j j j

j
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a u b u c u d u

x x
  
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b) Derive a finite-difference approximation to a first derivative in the form 
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c) Compare the leading truncation error terms for a) and b).  
d) Very briefly compare the compactness of the two numerical schemes and briefly explain 

how one would implement the finite differences obtained in a) and b) to compute the first 
derivative field over a finite domain ( 0 1x x x  ). 

 
Problem 5: Solving a wave equation  

The 1D Sommerfeld wave radiation equation is governed by:        0u u
c

t x

 
 

 
 

This linear equation is one of the most studied for the derivation of finite difference schemes. It 
corresponds to a constant speed advection. Travelling waves in the form of ( - )( , ) i kx tu x t e  are 
solutions of this equation if c k   which implies that the waves travel at constant amplitudes at 
fixed phase speed / k c  (non-dispersive waves). 
 
a) Discretize this equation using only explicit finite-difference schemes, solving for 

 1ˆ ˆ , ( 1)k

iu u i x k t     : i) use a “first-order backward difference” in space and a “first-order 
forward difference” in time;  ii) as i), but use a “second-order central difference” in space.  
 
b) Using the two discretization schemes obtained in a), we wish to solve the Sommerfeld 
equation for the following conditions. The wave-speed, c, is set to 1 m/s, and the domain is 1 m 
long. The total time of interest is 1 s. The initial and boundary conditions are as follows. The 
initial condition ( ,0)u x of the wave has the following shape: 

4( 0.25) 0.25 0.5
( ,0)

0
x x

u x
elsewhere

  
 


. 
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At the left boundary, a pulse is generated starting every 1/4 of a second. That is, at t = [0, 0.25, 
0.5, 0.75, 1] s, a pulse is generated with the following shape: 

sin( ( )) 0 0.25
(0, )

0
s st t t t

u t
otherwise

    
 


, 

where 4  and ts = [0, 0.25, 0.5, 0.75, 1] s. The duration of each pulse is 0.25 s.  
 
Using MATLAB (or your preferred software), numerically solve for ( , )u x t  using 100 nodes in 
time and 100 nodes in space: 

i) What time step ( t ) and space step ( ) sizes do these choices correspond to? 
ii) Implement and solve using the backwards difference discretization in space from a) 
iii) Implement and solve using the centered difference discretization in space from a) 

Plot the solution at time-step 50 for each case.  One of the discretization has issues, why? 
 
c) Using the acceptable discretization from b),  

i) Plot the solutions at t = [0, 1/3, 2/3, 1] s (on the same graph) for velocities of c = [0.9, 1, 
1.05] (on separate graphs). This will result in a total of 3 graphs, one graph for each 
different velocity.  

ii) Comment on the results. What happens when the value of c changes? What is the name of 
the condition that your numerical scheme needs to satisfy? Two of the three solutions seem 
fine, but one of them does not maintain a key property of exact solutions, why? Hint: 
Substitute c = 1 into your discretized equation. To better understand what’s happening, 
download Waveanim.m from course website. If you save your solutions in a matrix such that

 ( , 0),..., ( , 1)x t x t  U u u , where each u(x,t) is a column vector, then you can run the 
file Waveanim(U) to create a movie! 

 
d) If c is increased to 4.061 m/s, what would you do to ensure an acceptable scheme without 
changing the total number of nodes? (the total number of nodes is 10 000, 100 time x 100 space).  
 
e) What would happen if c became negative, i.e. c < 0? Would your discretization scheme still be 
valid? What about the initial/boundary conditions, could they still be the same or would they 
need to be changed? 
 
f) For many realistic fields the background velocity fields (here denoted by c) will not be 
constant in the domain of interest. Hence one cannot determine a priori the range of the proper 
grid spacing for a stable solution: stability needs to be checked as the code is run and the solution 
computed. In this part of the problem, we investigate what happens when the stability criterion is 
violated. Let’s assume that the background velocity varies and is equal to sin( ) 0.5c A t  , 
where A is either 0.6 or 0.8.  

i) Implement this change in your code and plot the solution at t = [0, 1/3, 2/3, 1] s, for both 

values of A = [0.6, 0.8]. Also plot the parameter t
C c

x





for both cases. 

ii) Comment your results. What do they imply for realistic advective flows, i.e. c = u? 
 



MIT OpenCourseWare
http://ocw.mit.edu

2.29 Numerical Fluid Mechanics
Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu/terms
http://ocw.mit.edu/



