2.29 Numerical Fluid Mechanics
Spring 2015 — Lecture 10

REVIEW Lecture 9:

- End of (Linear) Algebraic Systems
— Gradient Methods
— Krylov Subspace Methods

— Preconditioning of Ax=b

* FINITE DIFFERENCES

— Classification of Partial Differential Equations (PDEs) and examples
with finite difference discretizations

» Parabolic PDEs
 Elliptic PDEs
« Hyperbolic PDEs
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FINITE DIFFERENCES - Outline

. Classification of Partial Differential Equations (PDEs) and examples with
finite difference discretizations

— Parabolic PDEs, Elliptic PDEs and Hyperbolic PDEs
« Error Types and Discretization Properties

— Consistency, Truncation error, Error equation, Stability, Convergence

 Finite Differences based on Taylor Series Expansions
— Higher Order Accuracy Differences, with Example

— Taylor Tables or Method of Undetermined Coefficients

« Polynomial approximations
— Newton’s formulas
— Lagrange polynomial and un-equally spaced differences
— Hermite Polynomials and Compact/Pade’s Difference schemes

— Equally spaced differences
* Richardson extrapolation (or uniformly reduced spacing)

* lterative improvements using Roomberg'’s algorithm
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References and Reading Assignments

» Chapter 23 on “Numerical Differentiation” and Chapter 18 on
“Interpolation” of “Chapra and Canale, Numerical Methods for
Engineers, 2006/2010/2014.”

« Chapter 3 on “Finite Difference Methods” of “J. H. Ferziger
and M. Peric, Computational Methods for Fluid Dynamics.
Springer, NY, 3 edition, 2002”

« Chapter 3 on “Finite Difference Approximations” of “H. Lomax,
T. H. Pulliam, D.W. Zingg, Fundamentals of Computational
Fluid Dynamics (Scientific Computation). Springer, 2003
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Partial Differential Equations
Hyperbolic PDE: B2-4AC>0

. 2 2
Examples: (D) 8—? =c’ 8_1;1 « Wave equation, 2" order

ot ox

(2) ou +c ou =0 4 Sommerfeld Wave/radiation equation,
ot Ox 1t order

(3) 8_u +(U-V)u=g = Unsteady (linearized) inviscid convection

{ (Wave equation first order)
4 U-Vyu=g |

Steady (linearized) inviscid convection

* Allows non-smooth solutions

t <
 Information travels along characteristics, e.g.: o
o"‘. 0".. .““‘ 0'
— For (3) above: ax, = U(x (1)) G

Q Q
t > * * * o
Q Q
o o ot o o .‘
* * * *

. d X .“0 ..“‘ "..0 .“0 "’0 .'
— For (4), along streamlines: = <=U
S

« Domain of dependence of u(x,7) = “characteristic path”

* e.g., for (3),itis: x (t) for0<t<T

ol
* Finite Differences, Finite Volumes and Finite Elements

\<w

X,
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Partial Differential Equations
Hyperbolic PDE - Example

Waves on a String

2 2
gux1) L;(t);’t) =c’ gulx.0 Ig();’t) O<x<L, 0<t<oo 1
X

Initial Conditions

w(z,0) = f(z), 0<z<L
us(z,0) = g(z), 0<z<L

Boundary Conditions u(0,t) u(L,t)
u(0,t) = 0,,0<t<o0
u(L,t) = 0,,0<t<o0

Wave Solutions

e

v

F(x — c¢t) Forward propagating wave — 4
u =
G(xz + ct) Backward propagating wave u(x,0), u,(x,0) X

Typically Initial Value Problems in Time, Boundary Value Problems in Space
Time-Marching Solutions:

Implicit schemes generally stable

Explicit sometimes stable under certain conditions
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Wave Equation

0 u(x,t O u(x,t
u()zc’) =c’ u(i’) O<x<L, 0<t<oo
ot Oox
Discretization: h = L/n
k= T/m

z; = (i—1Dh,i=2,...,n—1
t; = (J—1Dk j=1,...,m
Finite Difference Representations (centered)

i, ti—1) — 2u(z;, t; it
(1) = u(z;, tj—1) u(z2 j) +u(zx 3+1)+O(k2)

'U.(Ii_h tj) — QU(IE', tj) -+ ’U.(I.H_]_, t)

uz.(z,t) = X

+O(h?)

ui; = u(z;,t;5)

Finite Difference Representations
Wiy — Uiy + Yigpr _ oUi1g — Wiy + Ui

k? h?

u(0,t)

Partial Differential Equations
Hyperbolic PDE - Example

u(L,t)

]+]

e

A
\

T

Y

u(x,0), u,(x,0)
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Partial Differential Equations
Hyperbolic PDE - Example

. . k A
Introduce Dimensionless Wave Speed ¢ = %
Explicit Finite Difference Scheme
Wi — 25+ Ui = CF(wimr; — 25 + iy 5) u(0,1) u(L,t)
j+1
2 2 - ‘]
Ui j+1|= (2 — 2C )’U.i,j +C (Ui+1,j —+ U.i_]_,j) — Ui ;-1 1= 2, o.on—1 E/ j-1
Stability Requirement: ¢ = % <1 ] \ ‘
-1 0 jHIN" %
c At u(x,0), u(x,0)

C= o <1 Courant-Friedrichs-Lewy condition (CFL condition)

Physical wave speed must be smaller than the largest numerical wave speed, or,
Time-step must be less than the time for the wave to travel to adjacent grid points:

Ax Ax
c< — or At< —
At c
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Error Types and Discretization Properties:
Consistency

Consider the differential equation (£ symbolic operator)
£L(9)=0
and its discretization for any given difference scheme

le(é) =0

% Consistency (Property of the discretization)

— The discretization of a PDE should asymptote to the PDE itself as
the mesh-size/time-step goes to zero, i.e

for all smooth functions ¢: | | £(9) —Z’Ax(@ ‘—) 0 when Ax — 0O

(the truncation error vanishes as mesh-size/time-step goes to zero)
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Error Types and Discretization Properties:
Truncation error and Error equation

< Truncation error — (D) - L Remember:
. Uax (9) = £ (9) @ does not satisfy the FD eqn.

— Since £(¢) =0 | the truncation error is the result of inserting the exact
solution in the difference scheme

— If the FD scheme is consistent:| 7, = £(¢)—Z'M(¢) —> O(Ax?) for Ax —>0

— p (>0) is the order of accuracy for the FD scheme L;Ax

— Order p indicates how fast the error is reduced when the grid is refined

s Error evolution equation

— From Z'M(&) =0 and ¢= ¢?+ & where ¢ is the discretization error, for
linear problems, we have: 7 = £(g)— L. (d+¢)=—L, (¢)

= LA'Ax(g) =—T,.

— The truncation error acts as a source for the discreti;ation error, which is

convected, diffused, evolved, etc., by the operator £,
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Error Types and Discretization Properties:
Stability

< Stability

— A numerical solution scheme is said to be stable if it does not amplify
errors ¢ that appear in the course of the numerical solution process

— For linear(-ized) problems, since Z’M(g) =—7,_, stability implies:

‘LA’Aj < Const. | with the Const. not a function of Ax
* |f inverse was not bounded, discretization errors ¢ would increase with
iterations

N

L)

— However, difficult to assess stability in real cases due to boundary
conditions and non-linearities

— In practice, infinite norm ‘ < Const. is often used.

 Itis common to investigate stability for linear problems, with constant
coefficients and without boundary conditions

» A widely used approach: von Neumann’s method (see lectures 12-13)
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Error Types and Discretization Properties:
Convergence

< Convergence

— A numerical scheme is said to be convergent if the solution of the
discretized equations tend to the exact solution of the (P)DE as the grid-
spacing and time-step go to zero

— Error equation for linear(-ized) systems: ¢ = —ZA;l(rAx)
— Error bounds for linear systems:
el =4 @0 <[ 4] el
For a consistent scheme: |z, | > O(Ax”) for Ax —0

5-1
L'Ax

Hence ||¢]| < ‘

|7, || < @ O(AX)

Convergence <= Stability + Consistency (for linear systems)
= Lax Equivalence Theorem (for linear systems)

— For nonlinear equations, numerical experiments are often used

* e.g., iterate or approximate true solution with computation on successively finer
grids, and compute resulting discretization errors and order of convergence
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Finite Differences - Basics

* Finite Difference Approximation idea directly borrowed
from the definition of a derivative.

#(x.) — H(X,)
Ax

#'(x) = lim

« Geometrical Interpretation !

— Quality of approximation >ﬂ§,
Improves as stencil points 0 -
get closer to x;

— Central difference would be Axir
exact if ¢ was a second
order polynomial and points
were equally spaced

Y

i-2 i-1 i i+1 i+2

Exact - Central
—— Backward Forward

Image by MIT OpenCourseWare.

On the definition of a derivative and its approximations
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FINITE DIFFERENCES:
Taylor Series, Higher Order Accuracy

How to obtain differentiation formulas of arbitrary high accuracy?

1) First approach: Use Taylor series, keep more higher-order terms
than strictly needed and express these higher-order terms as
finite-differences themselves

" m

J(x) = )+ Ax f(x,)
AX n+1

—/ (&)

 For example, how can we derive the forward finite-difference
estimate of the first derivative at x; with second order accuracy?

f (5= f(xi)+AXf'(x,-)+A2x—,2f"(x,~)+O(Ax3)} —— ) = LSO o) oy

* If we retain the second-derivative, and estimate it with first-order
accuracy, the order of accuracy for the estimate of f°(x;) will be p=2
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e FINITE DIFFERENCES:

Taylor Series, Higher Order Accuracy Cont’'d

2

4

} i

)@J.‘/

O,
4

£ or TECS

" m

Still using  f(x,

_ A AN

 Estimate the second-derlvative with forward finite-differences at first-
order accuracy:

_ ' &2 " 3 |
— f(xi+1) _f(xi)+AXf (xi)+ f (xi)+O(Ax ) *( )} f"( ) f(xi+2)_2f(xi+l)+f(xi) +O(Ax)
sz *(1) - Ax?
f(xin) = )+ 2% (X)) +—— f"(X)+0(AX) -
_>fv(xi) f‘(x+1)A)C f(.X') gxf"(x )+0(Ax2)
) = LD ) A0 S ) 2 (i) ) 0y - L) 4T ) 3D |

2.29 Numerical Fluid Mechanics PFJL Lecture 10, 14



Figure 23.1
Chapra and
Canale

Forward
Differences

2.29

Forward finite-divided-difference formulas: two versions are presented for each derivative. The

latter version incorporates more terms of the Taylor series expansion and is, consequently, more

accurate.

First Derivative

Fx) = M
—fxi+-2) + Af|x;1) — 3H(x)

{'(X,‘) = 2h

Second Derivative

” fxi+2) = 2f(xi41) + fix)

f()(,'} = h2

—f{xi+3) + 4f(xi2) — Sflxis) + 2f(x)
h?

f "(xi) =

Third Derivative

iy Hxixa) = 3fxia2) + 3flxin) — Fx)

f [XI', - h3

_3f(Xi+4) * ]4f(Xi+3] - 24ﬂxi+2' ¥ ]8f(Xi+I’ - 5f(Xi)
2h?

lx) =

Fourth Derivative

w1 Hxiva) = Aflxia3) + Of(xipo) = 4fixi) + flx)
f '(X,') - hA
—2fxix5) + 11fxir4) = 24f(xi43) + 26f(x;1-2) — 14H(x11) + 3f(x)

f ""(X,') = h4

Numerical Fluid Mechanics

Error

Ofhl

Olh?)

Ofhl

ah?)

Ohl

Olh?)

Ofhl

Olh?)
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Backward
Differences

FIGURE 23.2

Backward finite-divided-
difference formulas: two
versions are presented for each
derivative. The latter version
incorporates more terms of the
Taylor series expansion and s,
consequently, more accurate.

2.29

First Derivative

Error

f,(X,') = f(X;) _hf‘xi—ll Qh]
o 3fx) — 4f(xi=1) + fixi—2) Oh?)
(xi) =
2h
Second Derivative
Plx) = Fxi) — Qf(X;,—;) + flx;—2) Olh)
vy 2f0x) = Sfixic) + 4flxi—o) = fixi—s) Oh?)
f'X,') — h2 —
Third Derivative
P"(X,') = )((X,‘) - SHX,'—]) -:)33f(xl—2) - f(xl'—'3} ah]
fm(xi) - ‘SHXI) - ]8f(xi—]) + 24“;1};—32) _ 14{(X,'_3) + 3”&'—4’ qh?]
Fourth Derivative
) = fix) = 4fxi-1) + éf(x};z) — 4fixi—3) + fxi-a) Ol
) = 3x] — 14fxi-1) + 26f(xi-2) —h 424f(><,--3) + 1 1x-a) = 2f{xs) o)
Numerical Fluid Mechanics PFJL Lecture 10,
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Centered finite-divided-

difference formulas: two
versions are presented for each
derivative. The latter version
incorporates more ferms of the
Taylor series expansion and s,
consequently, more accurate.,

2.29

Centered
Differences

First Derivative

f[xi+l) - 'EIXF—I]
2h
—HX;+2| + 8'([?‘{#1' = SF[K:'-I:' + f':»‘ff—z}
12h

Fx) =

f'lx) =

Second Derivative

Fxie) = 2/} + Fxizn)

fﬂ{ X } = hz

f”':&' =

—Hx;42) + 16fx:1) = 30fx) + 16Hx-1) — fixi—2]

12h2

Third Derivative

() = fxiea) = 2Hxis1) + 2fx1) = flxi-2)
X = 2R3

o =

~flx:a] +81(x42) = 13fxi41) + 1 3Axi-1) — BHxi—z) + Alx;-3)

8h*

Fourth Derivative

. Hxiv2) = Aflxie1) + Oflx) = 4flxi1) + flxizg)
l:xl') Y

hzi
'rw[xl'h =

—Hxia3) + 12f(xi12) + 39f(x:i 1) + 56fx) — 39fx—1) + 12f(x—2) + flxi=a) oLd

Error .
Clh?)

Ol

Olh)

oLy

Olh?)

Olh’)

O[h?)

Numerical Fluid Mechanics

bh*
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FINITE DIFFERENCES
~’ Taylor Series, Higher Order Accuracy: EXAMPLE

Problem: Estimate 15t derivative of f=-0.1*x"4 - 0.15*x"3-0.5*%x"2-0.25*x +1.2 at
x=0.5, with a grid cell size of 2=0.25 and using successively higher order
schemes. How does the solution improve?

$Define the function Lll FD m %% Central difference

f=0(x) -0.1*x"4 - 0.15*x"3-0.5*x"2-0.25*x +1.2; - %$Second order:

$Define Step size df=(f (x+h)-f(x-h)) / (2*h);

h=0.25; fprintf ('Second order Central difference: %g, with

%$Set point at which to evaluate the derivative error:gss \n',df,abs(100*(df+0.9125)/0.9125))

% = 0.5; %$Fourth order:
- (- * * _Q% _ %
%% Using forward difference ?i2ihf(x+2 h) +8*f (x+h) -8*f (x-h) +f (x-2*h)) /

$First order: ) ) ) )
fprintf ('Fourth order Central difference: %g, with

df=(f (x+h)-f(x)) / h; error:%g%% \n',df,abs (100* (df+0.9125) /0.9125))
fprintf ('\n\n First order Forward difference: %g, with
error:%g%% \n',df,abs(100* (df+0.9125)/0.9125))

%$Second order:

df=(-f (x+2*h) +4*f (x+h) -3*f (x)) / (2*h); ()
utput
fprintf ('Second order Forward difference: %g, with F)
error:%g%% \n',df,abs (100* (df+0.9125)/0.9125)) First order Forward difference: -1.15469, with error:26.5411%

o)

%% Backwards difference

Second order Forward difference: -0.859375, with error:5.82192%
First order Backwards difference: -0.714063, with error:21.7466%
Second order Backwards difference: -0.878125, with error:3.76712%

$First order:
df=(-f(x-h)+f(x)) / (h);

fprintf ('First order Backwards difference: %g, with

error:%g%% \n',df,abs (100* (df+0.9125)/0.9125)) Second order Central difference: -0.934375, with error:2.39726%
%$Second order: Fourth order Central difference: -0.9125, with error:2.43337e-14%
df=(£(x-2%h) -4*£(x-h)+3*£(x)) / (2*h); Why is the 4th order “exact’?

fprintf ('Second order Backwards difference: %g, with
error:%g%% \n',df,abs(100* (df+0.9125)/0.9125))

2.29 Numerical Fluid Mechanics PFJL Lecture 10, 18




FINITE DIFFERENCES:
Taylor Series, Higher Order Accuracy
Summary

* 1st Approach:

— Incorporate more higher-order terms of the Taylor series expansion
than strictly needed and express them as finite differences themselves

— e.g. for finite difference of m™ derivative at order of accuracy p, express
the m+1%®, m+2th m+p-1th derivatives at an order of accuracy p-1, .., 2, 1.

— General approximation: (amuj ZS:
— a u. . =71
i U+ Ax
a‘xm j i=—r

— Can be used for forward, backward, skewed or central differences

— Can be computer automated

— Independent of coordinate system and extends to multi-dimensional
finite differences (each coordinate is often treated separately)

« Remember: order p of approximation indicates how fast the error is
reduced when the grid is refined (not necessarily the magnitude of
the error)
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FINITE DIFFERENCES:
~ Interpolation Formulas for Higher Order Accuracy

2nd approach: Generalize Taylor series using interpolation formulas

 Fit the unknown function solution of the (P)DE to an interpolation curve
and differentiate the resulting curve. For example:
- Fit a parabola to “fdata” at points x, ,, x,, x,,, (Ax,=x,—x,,),then
differentiate to obtain: : : i :
ey ) (B0)' - F 5 (8, 0| (Ax,) = (Ax) |
X )=

Ax;,, Ax; (Ax; + Ax,)

i+1

« This is a 2" order approximation (parabola approx. is of order 3)
» For uniform spacing, reduces to centered difference seen before

 |In general, approximation of first derivative has a truncation error of the order
of the polynomial (here 2)

+ All types of polynomials or numerical differentiation methods can be
used to derive such interpolations formulas

« Polynomial fitting, Method of undetermined coefficients, Newton’s
interpolating polynomials, Lagrangian and Hermite Polynomials, etc
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 FINITE DIFFERENCES Higher Order Accuracy:
Taylor Tables or Method of Undetermined Coefficients

Taylor Tables: Convenient way of forming linear combinations of Taylor Series
on a term-by-term basis

Table 3.1. Taylor table for centered 3-point Lagrangian approximation to a second derivative

0% u 1 ,
What we are (01.2) | - 'A—L—,E((L Uj-q . 3 b W + C'llj_;_l) = i
looking for, \ J —~ )
in1st col ;
N G An(R) A(Zy) AP(Zy) Adh(Z)
\ / J o J i ox? J 8583 J (9.’134 J
)] 182
Taylor Az?(9%) 1
series at: (8:1:2 )3
Mo—aru | —a —a ()] —a () e (] e ()
j —b"le —b
Mo—cwp | e, —e () —e (15 e (P g —e()-gy

Sum each column starting from left, force the sums to zero and so choose a, b, c, etc
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FINITE DIFFERENCES
Higher Order Accuracy: Taylor Tables Cont’'d

Table 3.1. Taylor table for centered 3-point Lagrangian approximation to a second derivative
0“u 1
— a1 +bu;+cu 7
(8:1;2 - Ax? 327 B 7 i+1) =
Sum each column starting from left and force the sums to be zero by proper choice of a, b, c, etc:

-1 -1 -1]|a 0

1 0 -1||b(=0| = [a b c]z[l —2 1] = Familiar 3-point
central difference
-1 0 -1f|lc -2

Truncation error is first column in the table that does not vanish, here fifth column of table:

l | —a -c [ 0tu Ax* [ 0%u
Thy = 5 + AXx ~7 | =~ 2
Ax“ |24 24 Ox ; 12 \ ox ;
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FINITE DIFFERENCES
Higher Order Accuracy: Taylor Tables Cont’'d

Table 3.2. Taylor table for backward 3-point Lagrangian approximation to a first derivative

ou 1
( ) = —(agu]'._g -+ a1j—1 “+ buj) == 7
\ J

ox Az )
Y
) Jdu 2( 8%u 3( 3 4( 8%

/ wo de(), A2(R),  AR(RY) A(3)
Ax(%)J 1
. . . : 1 _ . rey2. 1 D) S AV |
Q- Ujp| —az —az-(-2)-7 —ay-(-2) 5 —a2-(-2)°-5 —ax-(-2) 54
—ac | —a —a- ()7 —a- ()24 —a (1P a1t
~b-u; | —b

: 1 8612 a, 3 ou _Ax2 o’u
= |a, a b]=[1 4 3]/2 and TM=A—x[7+Z}Ax (aﬁ)j_ 3 (aﬁjj
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d d e e 4 r - <
{ jCMpqﬁ }Ecyﬁmpmm jcsp¢(v.n)d4 = | 4, d4 +Lj%ds¢dV

Advective fluxes Other transports (diffusion, etc)

(Adv.& diff. fluxes = convection) D SUTHALS it
sinks terms (reactions, etc)

P ;3,49 ;\ Applying the Gauss Theorem, for any arbitrary CV gives:
\

// \rA

/ ! opp _

\ —+V.(pgv) = Vq +35,
CV, \ | at ¢
fixed ¥ "/J

\ S I q¢
N For a common diffusive flux model (Fick’s law, Fourier’s law):
dys = —kV¢
Conservative form op¢ _
— — +V.(ppv)=V.(kV@)+s
of the PDE ot (ppv) = V. (V) +5,
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Strong-Conservative form
of the Navier-Stokes Equations (¢ = v)

d . o . = .
Cons. of Momentum: E.[CV'OWWJF.[CSPV(V”)CZA = Jcs—p ndA+J‘CSr.ndA+J‘CVpngJ

SF
Applying the Gauss Theorem gives: = (—Vp +V.T+ pg)dV
cr
For any arbitrary CV gives: 9pv V4 Vp+V.F4+ Cauchy
T TSQ ot +V.(pV v)=-Vp+ ¢ PE Mom. Eqn.
‘0@ N
’ pl \
/
I’ \‘l" With Newtonian fluid + incompressible + constant p:
\
CV’ \ a 1
. I ) 12A% ~ ~ —~
fixed \\\ ’/év Momentum: Y +V.(pV V) =-Vp+ V¥ + pg
1 1y '
RN / Mass: Vi=0
N s

Equations are said to be in “strong conservative form” if all terms have the form of the divergence
of a vector or a tensor. For the it Cartesian component, in the general Newtonian fluid case:

. . . _ 8pv, B Oou. ©Ou.|_ 2 51/!
With Newtonian fluid only: =227 L v (poy. $) = V. é + +—L e —Zpu—Lé +
o, HVAevv) E p “[axj 8xl) “T3H %, P8, j
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