2.29 Numerical Fluid Mechanics
= Spring 2015 — Lecture 11
REVIEW Lecture 10:

- Classification of Partial Differential Equations (PDEs) and
examples with finite difference discretizations
— Parabolic PDEs
— Elliptic PDEs
— Hyperbolic PDEs

* Error Types and Discretization Properties: <($)=0, £ ($)=0

— Consistency: ‘£(¢)—ZM(¢) — 0 whenAx — 0

— Truncation error: 7, = £(¢)— L. (#) — O(Ax") for Ax—0

— Error equation: r. = L(P)— L (p+¢&)=—L._(&) (for linear systems)
— Stability: L!||<Const. (for linear systems)
_Convergence: o< ea] < @ Oa
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2.29 Numerical Fluid Mechanics
Spring 2015 — Lecture 11

REVIEW Lecture 10, Cont’d:

» Classification of PDEs and examples

 Error Types and Discretization Properties
* Finite Differences based on Taylor Series Expansions

— Higher Order Accuracy Differences, with Examples

 Incorporate more higher-order terms of the Taylor series expansion than
strictly needed and express them as finite differences themselves (making
them function of neighboring function values)

« If these finite-differences are of sufficient accuracy, this pushes the remainder
to higher order terms => increased order of accuracy of the FD method

S
- Zai Ui = T
J

ox™

i=—r

« General approximation: (amu]

— Taylor Tables or Method of Undetermined Coefficients (Polynomial Fitting)

« Simply a more systematic way to solve for coefficients a;
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FINITE DIFFERENCES - Outline for Today

. Classification of Partial Differential Equations (PDEs) and examples with
finite difference discretizations (Elliptic, Parabolic and Hyperbolic PDEs)

« Error Types and Discretization Properties

— Consistency, Truncation error, Error equation, Stability, Convergence

 Finite Differences based on Taylor Series Expansions
— Higher Order Accuracy Differences, with Example

— Taylor Tables or Method of Undetermined Coefficients (Polynomial Fitting)

« Polynomial approximations
— Newton’s formulas
— Lagrange polynomial and un-equally spaced differences
— Hermite Polynomials and Compact/Pade’s Difference schemes
— Boundary conditions
— Un-Equally spaced differences

— Error Estimation: order of convergence, discretization error, Richardson’s
extrapolation, and iterative improvements using Roomberg’s algorithm
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References and Reading Assignments

» Chapter 23 on “Numerical Differentiation” and Chapter 18 on
“Interpolation” of “Chapra and Canale, Numerical Methods for
Engineers, 2006/2010/2014.”

« Chapter 3 on “Finite Difference Methods” of “J. H. Ferziger
and M. Peric, Computational Methods for Fluid Dynamics.
Springer, NY, 3 edition, 2002”

« Chapter 3 on “Finite Difference Approximations” of “H. Lomax,
T. H. Pulliam, D.W. Zingg, Fundamentals of Computational
Fluid Dynamics (Scientific Computation). Springer, 2003
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F|n|te Differences using Polynomial approximations
Numerical Interpolation:
“Historical” Newton’s Iteration Formula

Standard triangular family of polynomials

flz) = plz)+r(z)
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Newton’s Computational Scheme

— CD+CI($_$D)+“+Cn($_$0)“'(37 _mn—l) Cﬁ
f('n,+l)(£) zo f(x0)) C1
i (n+ 1)! (z=20) -+ (& — ) flzo, 21N C,
Divided Differences: c.=? r1 f(z1)3 (f[wo, @1, 2] Cy
f(zo) = co = co =|f(20) o (@1, 2] “flzo, z1, T2, 3]
f($2) >f[$1;$21$3]/
f({Bl) 200—1—01( r —SBD) = C1 _ = f[$2:373}’
f(z3)
Second
f(@2) = co + e1(z2 — @0) + ca2(w2 — 2 divided
First differences
fl@a)=f(x1)  f(z)=f(x) divided
0y = —2 0 T1—To differences
Ira2 —Io

= Newton’s formula allow easy recursive
computation of the coefficients of a polynomial
of order n that interpolates n+1 data point

= Derivative of that polynomial can then be
expressed as a function of these n+1 data
points (in our case, unknown fct values)
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Equidistant Sampling
T = T+ ih

f(z1) — f(=o)

1
= (- f)= AR

Finite Differences using Polynomial approximations
Equidistant Newton’s Interpolation

Divided Differences
with equidistant step size implied

" —fo

flzo,z1] = 71— 7o 1 fi f22f1+f0:
z1. T9| — flzo, - =3 3h—fom=
R = ’ e
2 — T T2 fa —2fa+ fi=PNh
= ﬁ(ﬁ*?ﬁﬂLﬁ)):ﬁNﬁ) I3
1 1 ., T3 [3
flzo, z1, @2, 23] = 31-—h3(f3 —-3f+3fi—fo) = @A o
o = %AfoJ
c2 = ﬁ *fo
Triangular Family of Polynomials ., _ ]thAst
Equidistant Sampling i
A A*
f(z) = fo+%(:c—:co)+ thfgo(x—:cg)(:c—m)—&—---
A" (n+1)fe
b e (e o) o)+ e o)
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s\ Numerical Differentiation using Newton’s algorithm
e for equidistant sampling: 1st Order

First Derivatives n=I

J)

Triangular Family of Polynomials
Equidistant Sampling

A A’ -
f(z) = fo+ %(z — ) + thfio(z —zo)(z —x1)+ - (// ]

A" fo

(n+1)( ¢
AT (@ —zo)(z —z1) - (T — Zn—1) + )

(¢ —0) - (¢ — zn)

v

(n+1)! \ ,' g
First order Tro ho Ty

n=1

B Afy ()
flz)=fo+ T(?? — o) + o (z — zo)(z — 21)

fay= 201 o = 1 - o)+ o)
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Numerical Differentiation using Newton’s algorithm
e for equidistant sampling: 2" Order

Second order

n=232
flz)= fg—i—%(:r—:rg)—l—?;ff (x—xg)(z—$1)+f 3&6) (x—z0)(z—x1)(T—22)+ -
, Afy,  A? A ,
f(z) = ;0 + Mfo (x — o) + tho(z —a1)+ O(h")
Flay = 220 (g 0+ fi) + O) /) n=2
 2h=2fo—fo+2f1i— fo 0
= o + O(R%)
= %(—gfo +2f1 — %f:) +o(r’)|  Forward Difference //l
1 fl - .fD 1 2 T _’T
z) = 20y (o h
f(x1) 7 g (e = 2f1+ fo) + O(R) S — —— >
= %(ﬁ — fo) + O(h?) Central Difference ro " x1 h o *
Second Derivatives

n=2  f'a) =

Forward Difference

= s = 25+ )+ O(h)

n=3 hIQ(fo —2f1 + f2) + O(h?) Central Difference

2.29 Numerical Fluid Mechanics PFJL Lecture 11,



/7= Finite Differences using Polyno

mial approximations

Numerical Interpolation: Lagrange Polynomials

(Reformulation of Newton’s polynomial)

4

p(x) = 3 Li(z)f(zr) = 3 Li(z) fx
k=0 k=0 T

Li(z) =3 lig !
1=0

= —>

( . k-3 k-2 k-1 k k+\fjk+2 x
0 k+#1
Lk(ﬂ’:i):é;ﬁ:{ - .
=1

Difficult to program
J Difficult to estimate errors
I (.GL‘) L L — &Iy Divisions are expensive
k p—
j=0.j#k Tk — L Important for numerical integration

Nodal basis in FE

2.29 Numerical Fluid Mechanics

PFJL Lecture 11, 9



Hermite Interpolation Polynomials and
Compact / Pade’ Difference Schemes

« Use the values of the function and its derivative(s) at given points &

— For example, for values of the function and of its first derivatives at pts &
u(x) = Zak(x) U, + Zbk(x) (8_)
k=1 k=1 X

* General form for implicit/explicit schemes (here focusing on
space)
. 0"u !
Zbi[ m] _Zaiu'ﬂ':TAx
i=—r Ox i =D !

— Generalizes the Lagrangian approach by using Hermitian interpolation

» Leads to the “Compact difference schemes” or “ Pade’ schemes ”
« Are implemented by the use of efficient banded solvers

* Derivatives are then also unknowns
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2.29

FINITE DIFFERENCES: Higher Order Accuracy
Taylor Tables for Pade’ schemes

Table 3.3. Taylor table for central 3-point Hermitian approximation to a first derivative

d(a—uj +
OX i1

auj (
— | +e
19).4 i

6uj 1
— | —-—(au,
OX )i,y  AX

., +bu; + Cuj+1): ?

N -
-V
I, 2 3 4 5
— u; ax| M AX? 6_1: AX? a—l; Ax* a—l: AX® 6—l;'
4 oX J; ox* ), ox* ), ox* ), X ),
’6"
u
AXd(—J — d d-(-1).1 d.(-1n 1 do-12- L | gy L
ox), (-1) 1 (-1) > (-1) 3 (-1) >4
Ax[a_“] _ 1 _ _ _ _
oX ;
ou 1 > 1 3 1 . 1
il — e e.(1)-= e.(1)-= e.(1)y.-= e. (1) —
Axe(@xll (1)1 (13 (12 | e o,
1 , 1 ;1 1 1
a - Uj71 -a -a.(-l).I 'a'('l) 'E 'a'('l) 'g '3'('1)4'ﬂ ‘a'('l)s'm
-b -y, -b — - — — _
- - 1 - 2 1l _ 3 1 _ 4 1 _ 5 1
T C C-(1)-I C-(l)-z C-(l)-E C-(l)-ﬂ c-(1) ‘120

Numerical Fluid Mechanics

Image by MIT OpenCourseWare.

PFJL Lecture 11,

11



FINITE DIFFERENCES: Higher Order Accuracy
Taylor Tables for Pade’ schemes, Cont'd

Table 3.3. Taylor table for central 3-point Hermitian approximation to a first derivative

oy) e syt
o).t (), oG

Image by MIT OpenCourseWare.

Sum each column starting from left and force the sums to be zero by proper choice of a, b, c, etc:

-1 -1 -1 0 Ol{a] [0
10 -1 1 1|/b| |-
-1 0 -1 =2 2||c|=|0 :>[abcde]=i[—303ll]
1 0 -1 3 3(|d| |0
-1 0 -1 -4 4]le| [0

Truncation error is sum of the first column that does not vanish in the table, here 6t" column

(divided by 4x):
. Ax* ([ Ou
120 | ox .
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\ Compact / Pade’ Difference Schemes: Examples

We can derive family of compact centered approximations for ¢ up to 6 order using:

) * (ox ) (gi) R L

Scheme Truncation error
Comments:
CDS-2 (A%’ 9 ¢ 0 1 0
|
B . Pade’ schemes use
CDS-4 13(Ax) 50 4 1 fewer computational
o | O 3 3
3-31 9x° nodes and thus are
4 s _-~more compact than CDS
Padé-4 (Ax) 00 1 3 0o 4
51 9x° 4 2
. Can be advantageous
, ° 57 banded systems!
Padé-6 4(Ax) 90’0 1 14 1 (more banded systems!)
7' Ox’ 3 9 9

Image by MIT OpenCourseWare.

2.29 Numerical Fluid Mechanics PFJL Lecture 11, 13



Higher-Order Finite Difference Schemes
Considerations

« Retaining more terms in Taylor Series or in polynomial
approximations allows to obtain FD schemes of increased
order of accuracy

* However, higher-order approximations involve more nodes,
hence more complex system of equations to solve and more
complex treatment of boundary condition schemes

* Results shown for one variable still valid for mixed derivatives

* To approximate other terms that are not differentiated: reaction
terms, etc
— Values at the center node is normally all that is needed
— However, for strongly nonlinear terms, care is needed (see later)

* Boundary conditions must be discretized
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Finite Difference Schemes:
Implementation of Boundary conditions

* For unique solutions, information is needed at boundaries

* Generally, one is given either:

1) the variable: u (x =x,_,,1) =u, 4(?) (Dirichlet BCs)

11) a gradient in a specific direction, e.g.: ou =@ () (Neumann BCs)
X (Xpnd )

111) a linear combination of the two quantities (Robin BCs)

« Straightforward cases:
—If value is known, nothing special needed (one doesn’t solve for the BC)

—If derivatives are specified, for first-order schemes, this is also
straightforward to treat
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Finite Difference Schemes:
Implementatlon of Boundary conditions, Cont’'d

» Harder cases: when higher-order approximations are used

— At and near the boundary: nodes outside of domain would be needed
 Remedy: use different approximations at and near the boundary

— Either, approximations of lower order are used

— Or, approximations go deeper in the interior and are one-sided. For example,

« 1t order forward-difference: ou —0 = L7% o = u, =1u,
Ox (Xpng 1) Xy =X
 Parabolic fit to the bnd point and two inner points:
—u.(x, —x,) +u,(x, —x) —u | (x,—x,) —(x, —x,) _ _
a_u ~ 3( 2 1) 2( 3 1) 1|:( 3 1) ( 2 1) :| (z Uy +4u2 3u1 for equidistant nodesj
Ox (Xpnst) (X2 - xl)(x3 - xl)(x3 - xz) 2Ax

~ 2u, —u, gAlxg u, — 11y, +O( Ax3) for equidistant nodes

« Cubic fit to 4 nodes (3™ order difference): Ou

X (Xpng )

- Compact schemes, cubic fitto 4 pts: %, , =4 =

18u, —9u, +2u, 6Ax (Ju
11 11

j for equidistant nodes
ox ),

* In Open-boundary systems, boundary problem is not well posed =>

— Separate treatment for inflow/outflow points, multi-scale (embedded) approach
and/or generalized inverse problem (using data in the interior)
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Finite-Differences on Non-Uniform Grids: 1-D

Truncation error depends not only on grid spacing but also on the
derivatives of the variable

f(‘xi+1) - f i
Axn+1

3 n
l +%f"‘(xi)+...+Ax’ S"(x)+R,
. n.

"

1/ (&)

Uniform error dlstrlbutlon can not be achieved on a uniform grid =>
non-uniform grids

— Use smaller (larger) Ax in regions where derivatives of the function are
large (small) => uniform discretization error

— However, in some approximation (centered-differences), specific terms
cancel only when the spacing is uniform

Example: Lets define Ax,, =x.,,—x,, Ay, =x,—x_, and write the Taylor
series at x;:
S =f(x)+(x—x) f'(x)+——F"—
()C x)n+1

R, = )
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Non-Uniform Grids Example: 1-D Central-difference

 Evaluate f(x) at x,,, and x,, , subtract results, lead to central-difference

) = 10+ A% £ )+ S £ 0) 4 S ) 4+ B ) 4R,

= ) = )= A £ )+ B ) =S )+ EE ) 4R
' _ f(xi+1)_f(xi—l) _ Axi+12 _Axi2 " sz+1 +Ax3 m
Fx)= Xt — X 2!(xi+1_xi—l)f ()= 3 (x,, — )f bt Ry
\ A

Ax,, +Ax, = x,,, - x, ation ¢
( i+1 P M Xz—l) = Truncation error 7, _

 For a non-uniform mesh, the leading truncation term is O(4x)

—The more non-uniform the mesh, the larger the 18t term in truncation error

—If the grid contracts/expands with a constant factor r,. | Ax,,, =7, Ax,

. . . 1-r) Ax,
— Leading truncation error termis : |7, = ( r) -/ (%)

—If r, Is close to one, the first-order truncatlon error remains small: this is
good for handling any types of unknown function f(x)
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Non-Uniform Grids Example: 1-D Central-difference

* What also matters is: “rate of error reduction as grid is refined"!

« Consider case where refinement is done by adding more grid points
but keeping a constant ratio of spacing (geometric progression), i.e.

. , _ Grid 2h
7 szh i-1 i i+1
e,2h T B Doy o e o o PY
i-2 i-1 I i+1 i+2
Grid h
v Ax.

1

Ax;,

i+1

Ax,

i+1 ‘
Fig. 3.3. Refinement of a non-uniform grid which expands by a constant factor re

» For coarse grid pts to be collocated with fine-grid pts: (r,,)* =7, ,,

 The ratio of the two truncation errors at a common point is then:
(1-7,) A

1 f"(xi) 1+r 2
= rz)Ax” which is |r =" | gince Ax? = Ax,+Ax., = (r,, +1) Ax,,
“len i " reh
’ S(x) ’
2

—The factor R =4 if r,= 1 (uniform grid). R is actually minimum at »,= 1.

—When r,> 1 (expending grid) or »,< 1 (contracting grid), the factor R > 4
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Non-Uniform Grids Example: 1-D Central-difference
Conclusions

* When a non-uniform “geometric progression” grid is refined, error due
to the 1st order term decreases faster than that of 29 order term !

- Since (r,,)* =r,,,, we have r,, — 1 as the grid is refined. Hence,
convergence becomes asymptotically 2" order (15t order term
cancels)

* Non-uniform grids are thus useful, if one can reduce Ax in regions
where derivatives of the unknown solution are large

« Automated means of adapting the grid to the solution (as it evolves)

* However, automated grid adaptation schemes are more challenging in
higher dimensions and for multivariate (e.g. physics-biology-acoustics) or
multiscale problems

 (Adaptive) Grid generation still an area of active research in CFD

 Conclusions also valid for higher dimensions and for other methods
(finite elements, etc)
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