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2.29 Numerical Fluid Mechanics

Spring 2015 – Lecture 13

REVIEW Lecture 12:
• Grid-Refinement and Error estimation

– Estimation of the order of convergence and of the discretization error

– Richardson’s extrapolation and Iterative improvements using Roomberg’s
algorithm

• Fourier Error Analysis

– Provide additional information to truncation error: indicates how well Fourier mode 

solution, i.e. wavenumber and phase speed, is represented

• Effective wavenumber:

• Effective wave speed (for linear convection eqn.,                     , integrating in time exactly):
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2.29 Numerical Fluid Mechanics

Spring 2015 – Lecture 13

REVIEW Lecture 12, Cont’d:
• Stability

– Heuristic Method: trial and error

– Energy Method: Find a quantity, l2 norm            , and then aim to show that it 

remains bounded for all n.

• Example: for                      we obtained 

– Von Neumann Method (Introduction), also called Fourier Analysis Method/Stability

• Hyperbolic PDEs and Stability

– 2nd order wave equation and waves on a string

• Characteristic finite-difference solution (review)

• Stability of C – C (CDS in time/space, explicit):

• Example: Effective numerical wave numbers and dispersion
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FINITE DIFFERENCES – Outline for Today

• Fourier Analysis and Error Analysis

– Differentiation, definition and smoothness of solution for ≠ order of spatial operators

• Stability

– Heuristic Method

– Energy Method

– Von Neumann Method (Introduction) : 1st order linear convection/wave eqn.

• Hyperbolic PDEs and Stability

– Example: 2nd order wave equation and waves on a string

• Effective numerical wave numbers and dispersion

– CFL condition: 

• Definition 

• Examples: 1st order linear convection/wave eqn., 2nd order wave eqn., other FD schemes

– Von Neumann examples: 1st order linear convection/wave eqn.

– Tables of schemes for 1st order linear convection/wave eqn.

• Elliptic PDEs

– FD schemes for 2D problems (Laplace, Poisson and Helmholtz eqns.)
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References and Reading Assignments

• Lapidus and Pinder, 1982: Numerical solutions of PDEs in 
Science and Engineering. Section 4.5 on “Stability”.

• Chapter 3 on “Finite Difference Methods” of “J. H. Ferziger
and M. Peric, Computational Methods for Fluid Dynamics. 
Springer, NY, 3rd edition, 2002”

• Chapter 3 on “Finite Difference Approximations” of “H. Lomax, 
T. H. Pulliam, D.W. Zingg, Fundamentals of Computational 
Fluid Dynamics (Scientific Computation). Springer, 2003”

• Chapter 29 and 30 on “Finite Difference: Elliptic and Parabolic 
equations” of “Chapra and Canale, Numerical Methods for 
Engineers, 2014/2010/2006.”
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Von Neumann Stability

• Widely used procedure

• Assumes initial error can be represented as a Fourier Series and 
considers growth or decay of these errors

• In theoretical sense, applies only to periodic BC problems and to 
linear problems 

– Superposition of Fourier modes can then be used

• Again, use,                              but for the error:

• Being interested in error growth/decay, consider only one mode:

• Strict Stability: The error will not to grow in time if   

– in other words, for t = nΔt, the condition for strict stability can be written:                         
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Evaluation of the Stability of a FD Scheme

Von Neumann Example

• Consider again:

• A possible FD formula (“upwind” scheme)

(t = nΔt,  x = jΔx) which can be rewritten:

• Consider the Fourier error decomposition (one mode) and discretize it:

• Insert it in the FD scheme, assuming the error mode satisfies the FD 

(strictly valid for linear eq. only):

• Cancel the common term (which is                      ) in (linear) eq. and 

obtain:
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Evaluation of the Stability of a FD Scheme

von Neumann Example

• The magnitude of            is then obtained by multiplying ξ with its 

complex conjugate:

Since

• Thus, the strict von Neumann stability criterion gives

Since                                                             

we obtain the same result as for the energy method:
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CFL condition
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Partial Differential Equations

Hyperbolic PDE: B2 - 4 A C > 0

Wave equation, 2nd order
Examples:

• Allows non-smooth solutions

• Information travels along characteristics, e.g.:

– For (3) above:

– For (4), along streamlines:

• Domain of dependence of u(x,T) = “characteristic path”

• e.g., for (3), it is:  xc(t) for 0< t < T

• Finite Differences, Finite Volumes and Finite Elements

• Upwind schemes
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(from Lecture 10)
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Partial Differential Equations

Hyperbolic PDE - Example
Waves on a String

Initial Conditions

Boundary Conditions

Wave Solutions

t

xu(x,0), ut(x,0)

u0,t) uL,t)

Typically Initial Value Problems in Time, Boundary Value Problems in Space

Time-Marching Solutions:

Implicit schemes generally stable

Explicit sometimes stable under certain conditions
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(from Lecture 10)
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t

xu(x,0), ut(x,0)

u0,t) uL,t)

Partial Differential Equations

Hyperbolic PDE - Example

j+1

j-1
j

ii-1 i+1

Finite Difference Representations (centered)

Finite Difference Representations

Wave Equation
2 2

2
2 2
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Discretization:

(from Lecture 10)
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t

xu(x,0), ut(x,0)

u0,t) uL,t)
j+1

j-1
j

ii-1 i+1

Introduce Dimensionless Wave Speed

Explicit Finite Difference Scheme

Stability Requirement:

Partial Differential Equations

Hyperbolic PDE - Example

1 Courant-Friedrichs-Lewy condition (CFL condition) c tC
x


 


Physical wave speed must be smaller than the largest numerical wave speed, or,

Time-step must be less than the time for the wave to travel to adjacent grid points: 

    or    x xc t
t c

 
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(from Lecture 10)
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Partial Differential Equations

Hyperbolic PDE - Example

Start of Integration: Euler and Higher Order Starters

t

xu(x,0)=f(x)  , ut(x,0)=g(x)

u0,t) uL,t)

j=1ii-1 i+1

1st order Euler Starter

But, second derivative in x at t = 0 is known from IC:

From Wave Equation

Higher order Taylor Expansion

Higher Order Self Starter j=2

+k

- 2

Given ICs:

General idea: use the PDE itself to get higher order integration 
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Waves on a String

L=10;

T=10;

c=1.5;

N=100;

h=L/N;

M=400;

k=T/M;

C=c*k/h

Lf=0.5;

x=[0:h:L]';

t=[0:k:T];

%fx=['exp(-0.5*(' num2str(L/2) '-x).^2/(' num2str(Lf) ').^2)']; 

%gx='0';

fx='exp(-0.5*(5-x).^2/0.5^2).*cos((x-5)*pi)';

gx='0';  %Zero first time derivative at t=0

f=inline(fx,'x');

g=inline(gx,'x');

n=length(x);

m=length(t);

u=zeros(n,m);

%  Second order starter

u(2:n-1,1)=f(x(2:n-1));

for i=2:n-1

u(i,2) = (1-C^2)*u(i,1) + k*g(x(i)) +C^2*(u(i-1,1)+u(i+1,1))/2;

end

%  CDS: Iteration in time (j) and space (i)

for j=2:m-1

for i=2:n-1

u(i,j+1)=(2-2*C^2)*u(i,j) + C^2*(u(i+1,j)+u(i-1,j)) - u(i,j-1);

end

end

waveeq.m

Initial condition

2 2
2

2 2

( , ) ( , ) 0 , 0u x t u x tc x L t
t x

 
     

 

figure(1)

plot(x,f(x));

a=title(['fx = ' fx]);

set(a,'FontSize',16);

figure(2)

wavei(u',x,t);

a=xlabel('x');

set(a,'Fontsize',14);

a=ylabel('t');

set(a,'Fontsize',14);

a=title('Waves on String');

set(a,'Fontsize',16);

colormap;
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L=10;

T=10;

c=1.5;

N=100;

h=L/N;      % Horizontal resolution (Dx)

M=400;

%  Test: increase duration of simulation, to see effect of 

%dispersion and effective wavenumber/speed (due to 2nd order)

%T=100;M=4000;

k=T/M; % Time resolution  (Dt)

C=c*k/h    % Try case C>1, e.g. decrease Dx or increase Dt

Lf=0.5;

x=[0:h:L]';

t=[0:k:T];

%fx=['exp(-0.5*(' num2str(L/2) '-x).^2/(' num2str(Lf) ').^2)']; 

%gx='0';

fx='exp(-0.5*(5-x).^2/0.5^2).*cos((x-5)*pi)';

gx='0';

f=inline(fx,'x');

g=inline(gx,'x');

n=length(x);

m=length(t);

u=zeros(n,m);

%Second order starter

u(2:n-1,1)=f(x(2:n-1));

for i=2:n-1

u(i,2) = (1-C^2)*u(i,1) + k*g(x(i)) +C^2*(u(i-1,1)+u(i+1,1))/2;

end

%CDS: Iteration in time (j) and space (i)

for j=2:m-1

for i=2:n-1

u(i,j+1)=(2-2*C^2)*u(i,j) + C^2*(u(i+1,j)+u(i-1,j)) - u(i,j-1);

end

end

waveeq.m

Waves on a String, Longer simulation:
Effects of dispersion and effective wavenumber/speed
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Wave Equation

d’Alembert’s Solution

Wave Equation

Solution

Periodicity Properties

Proof

G F

F

2 2
2

2 2

( , ) ( , ) 0 , 0u x t u x tc x L t
t x

 
     

 

t

xu(x,0)=f(x)  , ut(x,0)=g(x)

u0,t) uL,t)
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Hyperbolic PDE

Method of Characteristics

G F
First 2 Rows known j+1

j-1

j

Characteristic Sampling

Exact Discrete Solution

Explicit Finite Difference Scheme t

xu(x,0)=f(x)  , ut(x,0)=g(x)

u0,t) uL,t)



PFJL  Lecture 13,    17Numerical Fluid Mechanics2.29

Hyperbolic PDE

Method of Characteristics

G F j+1

j-1

j

Let’s proof the following FD scheme is  an exact Discrete Solution

D’Alembert’s Solution with C=1

Proof

t

xu(x,0)=f(x)  , ut(x,0)=g(x)

u0,t) uL,t)
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( , )u x t ( , )u x t

Courant-Fredrichs-Lewy Condition (1920’s)

• Basic idea: the solution of the Finite-Difference (FD) equation 

can not be independent of the (past) information that determines 

the solution of the corresponding PDE

• In other words: 

The “Numerical domain of dependence of FD scheme must 

include the mathematical domain of dependence of the 

corresponding PDE”

CFL NOT satisfied CFL satisfied
time

space

time

spacePDE dependence
Numerical “stencil”
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Determine domain of dependence of PDE and of FD scheme

• PDE:

• FD scheme. For our Upwind discretization, with t = nΔt,  x = jΔx :

=> CFL condition:

CFL: Linear convection (Sommerfeld Eqn) Example

( , ) ( , ) 0u x t u x tc
t x

 
 

 
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Slope of characteristic:

Slope of Upwind scheme:
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© Springer. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/fairuse.
Source: Figure 2.1 from Durran, D. Numerical Methods for Wave Equations
in Geophysical Fluid Dynamics. Springer, 1998.

http://ocw.mit.edu/fairuse
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CFL: 2nd order Wave equation Example

Determine domain of dependence of PDE and of FD scheme 

• PDE, second order wave eqn example:

– As seen before: slope of characteristics:

• FD scheme: discretize: t = nΔt,  x = jΔx

– CD scheme (CDS) in time and space (2nd order), explicit

– We obtain from the respective slopes:
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 

   
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      
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Full line case: CFL satisfied 

Dotted lines case: 

c and Δt too big, Δx too 

small (CFL NOT satisfied)
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CFL Condition: Some comments

• CFL is only a necessary condition for stability

• Other (sufficient) stability conditions are often more restrictive

– For example: if                              is discretized as

– One obtains from the CFL: 

– While a Von Neumann analysis leads:

• For equations that are not purely hyperbolic or that can 
change of type (e.g. as diffusion term increases), CFL 
condition can at times be violated locally for a short time, 
without leading to global instability further in time

( , ) ( , ) 0u x t u x tc
t x

 
 

 

nd thCD,2 order in CD,4 order in x

( , ) ( , ) 0
t

u x t u x tc
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    
    

    

2c t
x





Five grid-points stencil:

(-1,8,0,-8,1) / 12

See Taylor tables in 

previous lecture and  

eqn. sheet

0.728c t
x




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von Neumann Examples

• Forward in time (Euler), centered in space, Explicit 

– Von Neumann: insert

• Taking the norm:

• Unconditionally Unstable

• Implicit scheme (backward in time, centered in space)

• Unconditionally Stable

1
1 1 1
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   

   
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Stability of FD schemes for ut + b uy = 0   (t denoted x below)

Table showing various finite difference forms removed due to copyright restrictions.
Please see Table 6.1 in Lapidus, L., and G. Pinder. Numerical Solution of Partial
Differential Equations in Science and Engineering. Wiley-Interscience, 1982.
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Stability of FD schemes for ut + b uy = 0, Cont.

Table showing various finite difference forms removed due to copyright restrictions.
Please see Table 6.1 in Lapidus, L., and G. Pinder. Numerical Solution of Partial
Differential Equations in Science and Engineering. Wiley-Interscience, 1982.
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Partial Differential Equations

Elliptic PDE

Laplace Operator

Laplace Equation – Potential Flow

Helmholtz equation – Vibration of plates

Poisson Equation

• Potential Flow with sources

• Steady heat conduction in plate + source

Examples:

2  U u u
Steady Convection-Diffusion

• Smooth solutions (“diffusion effect”) 

• Very often, steady state problems

• Domain of dependence of u is the full domain D(x,y) => “global” solutions

• Finite differ./volumes/elements, boundary integral methods (Panel methods)

ϕ

ϕ

(from Lecture 9)
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Partial Differential Equations

Elliptic PDE - Example

y

xu(x,0) = f1(x)

u0,y)=g1(y) ua,y)=g2(y)
j+1

j-1
j

ii-1 i+1

Equidistant Sampling

Discretization

Finite Differences

u(x,b) = f2(x)

(from Lecture 9)

Dirichlet BC
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Discretized Laplace Equation

Partial Differential Equations

Elliptic PDE - Example

y

xu(x,0) = f1(x)

ua,y)=g2(y)
j+1

j-1
j

ii-1 i+1

u(x,b) = f2(x)
Finite Difference Scheme

Global Solution Required

Boundary Conditions

u0,y)=g1(y)

i

i

(from Lecture 9)



PFJL  Lecture 13,    28Numerical Fluid Mechanics2.29

Elliptic PDEs

Laplace Equation, Global Solvers

p1 p2 p3

p4 p5 p6

p7 p8 p9

u1,2 u5,2

u2,1

u5,2

Dirichlet BC

Leads to Ax = b, with A block-tridiagonal:

A = tri { I , T , I }
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Neumann (Derivative) Boundary Condition

Ellipticic PDEs

Neumann Boundary Conditions

y

xu(x,0) = f1(x)

u0,y)=g1(y) uxa,y) given

ii-1 i+1

u(x,b) = f2(x)

Finite Difference Scheme

Finite Difference Scheme at i = n

Derivative BC: Finite Difference

Boundary Finite Difference Scheme at i = n

1, 1, , 1 , 1 ,2 4 0n j n j n j n j n j
n

uu x u u u u
x   


      



given

Leads to a factor 2 (a matrix 2 I in A) for points along boundary

j
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