

2.29 Numerical Fluid Mechanics Spring 2015 – Lecture 15

REVIEW Lecture 14:

Elliptic PDEs, Continued

- Examples, Higher order finite differences
- Irregular boundaries: Dirichlet and Von Neumann BCs
- Internal boundaries

Parabolic PDEs and Stability

- Explicit schemes (1D-space)
 - Von Neumann
- Implicit schemes (1D-space): simple and Crank-Nicholson, von Neumann
- Examples
- Extensions to 2D and 3D
 - Explicit and Implicit schemes
 - Alternating-Direction Implicit (ADI) schemes

TODAY (Lecture 15): FINITE VOLUME METHODS

- Integral forms of the conservation laws
- Introduction to FV Methods
- Approximations needed and basic elements of a FV scheme
 - FV grids: Cell centered (Nodes or CV-faces) vs. Cell vertex; Structured vs. Unstructured
 - Approximation of surface integrals (leading to symbolic formulas)
 - Approximation of volume integrals (leading to symbolic formulas)
- Summary: Steps to step-up FV scheme
- Examples: one-dimensional examples
 - Generic equations
 - Linear Convection (Sommerfeld eqn.): convective fluxes
 - 2nd order in space, 4th order in space, links to CDS
 - Unsteady Diffusion equation: diffusive fluxes
 - Two approaches for 2nd order in space, links to CDS

2.29

References and Reading Assignments

- Chapter 29.4 on "The control-volume approach for elliptic equations" of "Chapra and Canale, Numerical Methods for Engineers, 2014/2010/2006."
- Chapter 4 on "Finite Volume Methods" of "J. H. Ferziger and M. Peric, Computational Methods for Fluid Dynamics. Springer, NY, 3rd edition, 2002"
- Chapter 5 on "Finite Volume Methods" of "H. Lomax, T. H. Pulliam, D.W. Zingg, Fundamentals of Computational Fluid Dynamics (Scientific Computation). Springer, 2003"
- Chapter 5.6 on "Finite-Volume Methods" of T. Cebeci, J. P. Shao, F. Kafyeke and E. Laurendeau, Computational Fluid Dynamics for Engineers. Springer, 2005.

Integral Conservation Law for a scalar ϕ

$$\left\{ \frac{d}{dt} \int_{CM} \rho \phi dV = \right\} \frac{d}{dt} \int_{CV_{\text{fixed}}} \rho \phi dV + \underbrace{\int_{CS} \rho \phi (\vec{v}.\vec{n}) dA}_{\text{Advective fluxes}} = \underbrace{-\int_{CS} \vec{q}_{\phi}.\vec{n} \ dA}_{\text{Other transports (diffusion, etc)}} + \underbrace{\sum_{CV_{\text{fixed}}} s_{\phi} \ dV}_{\text{Sum of sources and sinks terms (reactions, etc)}}$$

Applying the Gauss Theorem, for any arbitrary CV gives:

$$\frac{\partial \rho \phi}{\partial t} + \nabla \cdot (\rho \phi \vec{v}) = -\nabla \cdot \vec{q}_{\phi} + s_{\phi}$$

For a common diffusive flux model (Fick's law, Fourier's law):

$$\vec{q}_{\phi} = -k\nabla\phi$$

Conservative form
$$\frac{\partial \rho \phi}{\partial t} + \nabla \cdot (\rho \phi \vec{v}) = \nabla \cdot (k \nabla \phi) + s_{\phi}$$
 of the PDE

Strong-Conservative form of the Navier-Stokes Equations ($\phi \Rightarrow v$)

Cons. of Momentum:
$$\frac{d}{dt} \int_{CV} \rho \vec{v} dV + \int_{CS} \rho \vec{v} (\vec{v}.\vec{n}) dA = \underbrace{\int_{CS} -p \ \vec{n} dA + \int_{CS} \vec{\tau} . \vec{n} dA + \int_{CV} \rho \vec{g} dV}_{=\sum \vec{F}}$$

Applying the Gauss Theorem gives:

$$= \int_{CV} \left(-\nabla p + \nabla \cdot \vec{\tau} + \rho \vec{g} \right) dV$$

For any arbitrary CV gives:
$$\frac{\partial \rho \vec{v}}{\partial t} + \nabla \cdot (\rho \vec{v} \vec{v}) = -\nabla p + \nabla \cdot \vec{\vec{\tau}} + \rho \vec{g}$$

Cauchy Mom. Eqn.

With Newtonian fluid + incompressible + constant μ:

Momentum:
$$\frac{\partial \rho \vec{v}}{\partial t} + \nabla \cdot (\rho \vec{v} \vec{v}) = -\nabla p + \mu \nabla^2 \vec{v} + \rho \vec{g}$$

Mass: $\nabla \vec{v} = 0$

Equations are said to be in "strong conservative form" if all terms have the form of the divergence of a vector or a tensor. For the *i*th Cartesian component, in the general Newtonian fluid case:

With Newtonian fluid only:
$$\frac{\partial \rho v_i}{\partial t} + \nabla \cdot (\rho v_i \ \vec{v}) = \nabla \cdot \left(-p \ \vec{e}_i + \mu \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) \vec{e}_j - \frac{2}{3} \mu \frac{\partial u_j}{\partial x_j} \vec{e}_i + \rho g_i x_i \vec{e}_i \right)$$

FINITE VOLUME METHODS: Introduction

- Finite Difference Methods are based on a discretization of the differential forms of the conservation equations
- Finite Volume Methods are based on a discretization of the integral forms of the conservation equations:

$$\frac{d}{dt} \int_{CV_{\text{fixed}}} \rho \phi dV + \underbrace{\int_{CS} \rho \phi (\vec{v}.\vec{n}) dA}_{\text{Advective fluxes}} = \underbrace{-\int_{CS} \vec{q}_{\phi}.\vec{n} \ dA}_{\text{Other transports (diffusion, etc)}} + \underbrace{\sum \int_{CV_{\text{fixed}}} s_{\phi} \ dV}_{\text{Sum of sources and sinks terms (reactions, etc)}}$$

- Basic ideas/steps to set-up a FV scheme:
 - Grid generation (CVs):
 - Divide the simulation domain into a set of discrete control volumes (CVs)
 - For maintenance of conservation, usually important that CVs don't overlap
 - Discretize the integral/conservation equation on CVs:
 - Satisfy the integral form of the conservation law to some degree of approximation for each of the many contiguous control volumes
 - Solve the resultant discrete integral/flux equations

FV METHODS: Introduction

- FV approach has two main advantages:
 - Ensures that the discretization is conservative, locally and globally
 - Mass, Momentum and often Energy are conserved in a discrete sense
 - In general, if discrete equations are summed over all CVs, the global conservation equation are retrieved (surface integrals cancel out)
 - These local/global conservations can be obtained from Finite Differences (FDs) (strong conservative form), but they are natural/direct for a FV formulation
 - Does not require a coordinate transformation to be applied to irregular meshes
 - Can be applied directly to unstructured meshes (arbitrary polyhedra in 3D or polygons in 2D)
- In our examples, we will work with

$$\frac{d}{dt} \int_{V(t)} \rho \phi dV + \int_{S(t)} \rho \phi \left(\vec{v} \cdot \vec{n} \right) dA = - \int_{S(t)} \vec{q}_{\phi} \cdot \vec{n} \, dA + \int_{V(t)} s_{\phi} \, dV$$

where V(t) is any discrete control volume. We will assume for now that they don't vary in time: V(t)=V

FV METHODS

Several Approximations Needed

To integrate discrete CV equation:

$$\frac{d}{dt} \int_{V} \rho \phi dV + \int_{S} \rho \phi (\vec{v}.\vec{n}) dA = -\int_{S} \vec{q}_{\phi}.\vec{n} dA + \int_{V} s_{\phi} dV$$

- A "time-marching method" needs to be used to integrate $\Phi = \int_{V} \rho \phi dV$ to the next time step(s) $\frac{d}{dt}\int_{V} \rho \phi dV = \frac{d\Phi}{dt}$

– Total flux estimate F_{ϕ} is required at the boundary of each CV

$$\int_{S} \vec{F}_{\phi} \cdot \vec{n} \, dA = \int_{S} \rho \phi (\vec{v} \cdot \vec{n}) dA + \int_{S} \vec{q}_{\phi} \cdot \vec{n} \, dA$$

e.g. F_{ϕ} = advection + diffusion fluxes

Total source term (sum of sources) must be integrated over each CV

$$S_{\phi} = \int_{V} S_{\phi} \ dV$$

- Hence cons. eqn. becomes: $\frac{d\Phi}{dt} + \int_{S} \vec{F}_{\phi} \cdot \vec{n} \, dA = S_{\phi}$
- These needs lead to basic elements of a FV scheme, but we also need to relate Φ and ϕ

FV METHODS

Several Approximations Needed, Cont'd

- "Time-marching method" for CV equation: $\frac{d\Phi}{dt} + \int_{S} \vec{F}_{\phi} \cdot \vec{n} \, dA = S_{\phi}$
 - The average of ϕ over a CV cell, $\bar{\Phi} = \frac{1}{V} \int_{V} \rho \phi dV$, satisfies

$$V \frac{d\overline{\Phi}}{dt} + \int_{S} \overrightarrow{F}_{\phi} . \overrightarrow{n} \ dA = S_{\phi}$$
 (since $\frac{d}{dt} \int_{V} \rho \phi dV = \frac{d}{dt} (V \frac{1}{V} \int_{V} \rho \phi dV)$)

for V fixed in time.

- Hence, after discrete time-integration, we would have updated the cell-averaged quantities $\bar{\Phi}$
- For the total flux estimate F_{ϕ} at CV boundary: "Reconstruction" of ϕ from $\bar{\Phi}$
 - Fluxes are functions of $\phi =>$ to evaluate them, we need to represent ϕ within the cell
 - This can be done by a piece-wise approximation which, when averaged over the CV, gives back $\bar{\Phi}$
 - But, each cell has a different piece-wise approximation => fluxes at boundaries can be discontinuous. Two example of remedies:
 - Take the average of these fluxes (this is a non-dissipative scheme, analogous to central differences)

2.29

FV METHODS Basic Elements of FV Scheme

- 1. Given $\bar{\Phi}$ for each CV, construct an approximation to $\phi(x, y, z)$ in each CV and evaluate fluxes $F_{\phi}(x,y,z)$
 - Find ϕ at the boundary using this approximation, evaluate fluxes F_{ϕ}
 - This generally leads to two distinct values of the flux for each side of the boundary
- 2. Apply some strategy to resolve the flux discontinuity at the CV boundary to produce a single F_{ϕ} over the whole boundary
- 3. Integrate the fluxes F_{ϕ} to obtain $\int_{S} \vec{F}_{\phi} \cdot \vec{n} dA$: | Surface Integrals|
- 4. Compute S_{ϕ} by integration over each CV: |Volume Integrals|
- 5. Advance the solution in time to obtain the new values of $\bar{\Phi}$

$$V\frac{d\bar{\Phi}}{dt} + \int_{S} \vec{F}_{\phi} \cdot \vec{n} \, dA = S_{\phi}$$

Time-Marching

Different Types of FV Grids

Usual approach (used here):

- Define CVs by a suitable grid - -
- Assign computational node to CV center
- Advantages: nodal values will represent the mean over the CV at high(er) accuracy (second order) since node is centroid of CV

Other approach:

- Define nodal locations first
- Construct CVs around them (so that CV faces lie midway between nodes) - -
- Advantage: CDS approximations of derivatives (fluxes) at boundaries are more accurate (faces are midway between two nodes)

Node Centered

CV-Faces Centered

Different Types of FV Grids, Cont'd

- Other specialized variants
 - Cell centered vs. Cell vertex
 - Structured:
 - All mesh points lie on intersection two/three lines
 - vs. Unstructured:
 - Meshes formed of triangular or quadrilateral cells in 2D, or tetrahedra or pyramids in 3D
 - Cells are identified by their numbers (can not be indentified by coordinate lines, e.g. i,j)

Remarks

- Discretization principles the same for all grid variants
 - => For now, we work with (a): Cell centered (i,j) is the center of the cell, similar to FD)
 - In 3D, a cell has a finite volume (for extruded mesh, given distance ⊥ to plane is used ⇒ behaves as 2D)
- What changes are the relations between various locations on the grid and accuracies

Fig. 5.2. Two-dimensional finite-volume mesh systems. (a) Cell centered structured finitevolume mesh: (b) cell vertex structured finite-volume mesh; (c) cell centered unstructured finite-volume mesh: (d) cell vertex unstructured finite-volume mesh.

© Springer. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse. Source: Cebeci, T., J. Shao, et al. Computational Fluid Dynamics for Engineers: From Panel to Navier-Stokes Methods with Computer Programs. Springer, 2005.

Approximation of Surface Integrals

- Typical (cell centered) 2D and 3D Cartesian CV (see conventions on 2 figs)
- Total/Net flux through CV boundary
 - is sum of integrals over four (2D) or six (3D) faces:

$$\int_{S} \vec{F}_{\phi} . \vec{n} \ dA = \sum_{k} \int_{S_{k}} f_{\phi} \ dA$$

- for now, we will consider a single typical CV surface, the one labeled 'e'
- To compute surface integral, ϕ is needed everywhere on surface, but $\bar{\Phi}$ only known at nodal (CV center) values => two successive approximations needed:
 - Integral estimated based on values at one or more locations on the cell face
 - These cell faces values approximated in terms of nodal values

Notation used for a Cartesian 2D and 3D grid. Image by MIT OpenCourseWare.

Approximation of Surface Integrals, Cont'd

1D surfaces (2D CV)

- Goal: estimate $F_e = \int_S f_\phi dA$
- Simplest approximation: midpoint rule (2nd order)
 - − F_e is approximated as a product of the integrand at cell-face center (itself approximation of mean value

over surface) and the cell-face area
$$\underline{F_e} = \int_S f_\phi \, dA = \overline{f_e} S_e = f_e S_e + O(\Delta y^2) \approx \underline{f_e} S_e \qquad \left[f(y) = f(y_e) + \xi f'(y_e) + \frac{\xi^2}{2!} f''(y_e) + R_2 \right] \quad \xi = y - y_e$$

- Since f_e is not available, it has to be obtained by interpolation
 - Has to be computed with 2nd order accuracy to preserve accuracy of midpoint rule

Notation used for a Cartesian 2D and 3D gridImage by MIT OpenCourseWare.

Approximation of Surface Integrals, Cont'd

- Goal: estimate $F_e = \int_S f_\phi dA$
- Another 2nd order approximation:

Trapezoid rule

- $F_{\rm e}$ is approximated as:

$$F_e = \int_{S_e} f_{\phi} dA \approx S_e \frac{(f_{ne} + f_{se})}{2} + O(\Delta y^2)$$

Notation used for a Cartesian 2D and 3D grid. Image by MIT OpenCourseWare.

- In this case, it is the fluxes at the corners f_{ne} and f_{se} that need to be obtained by interpolation
 - Have to be computed with 2nd order accuracy to preserve accuracy
- Higher-order approximation of surface integrals require more than 2 points / locations on the cell-face
 - Simpson's rule (4th order approximation): $F_e = \int_{S_e} f_{\phi} dA \approx S_e \frac{(f_{ne} + 4f_e + f_{se})}{6} + O(\Delta y^4)$

- Values needed at 3 locations
- To keep accuracy of integral: e.g. use cubic polynomials to estimate these values from $\overline{\Phi}_{\rm p}$'s nearby

Approximation of Surface Integrals, Cont'd 2D surface (for 3D problems)

- Goal: estimate $F_e = \int_S f_\phi dA$ for 3D CV
- Simplest approximation: still the midpoint rule (2nd order)
 - F_e is approximated as:

$$F_e = \int_{S_e} f_{\phi} dA \approx S_e f_e + O(\Delta y^2, \Delta z^2)$$

Notation used for a Cartesian 2D and 3D grid. Image by MIT OpenCourseWare.

- Higher-order approximation (require values elsewhere e.g. at vertices) possible but more complicated to implement for 3D CV
- Integration easy if variation of f_e over 2D surface is assumed to have specific easy shape to integrate
 - e.g. assume 2D polynomial interpolation over surface, then complete (symbolic) integration

Approximation of **VOLUME** Integrals

• Goal: estimate
$$S_{\phi} = \int_{V} S_{\phi} dV$$

$$\bar{\Phi} = \frac{1}{V} \int_{V} \rho \phi dV$$

- Simplest approximation: product of CV's volume with the mean value of the integrand (approximated by the value at the center of the node P)
 - S_p approximated as:

$$S_P = \int_V S_\phi \ dV = \overline{S}_P \ V \approx S_P \ V$$

- Exact if s_p is constant or linear within CV
- 2nd order accurate otherwise

Notation used for a Cartesian 2D and 3D grid. Image by MIT OpenCourseWare.

 Higher order approximation require more locations than just the center

Approximation of **VOLUME** Integrals

Goal: estimate

$$S_{\phi} = \int_{V} S_{\phi} \ dV$$

$$\bar{\Phi} = \frac{1}{V} \int_{V} \rho \phi dV$$

- Higher order approximations:
 - Requires Φ values at other locations than P
 - Obtained either by interpolating neighbor nodal values or by using shape functions/ polynomials

Notation used for a Cartesian 2D and 3D grid. Image by MIT OpenCourseWare.

- Consider 2D case (volume integral is a surface integral) using shape functions
 - Bi-quadratic shape function leads to a 4th order approximation (9 coefficients)

$$s(x, y) = a_0 + a_1 x + a_2 y + a_3 x^2 + a_4 y^2 + a_5 xy + a_6 x^2 y + a_7 xy^2 + a_8 x^2 y^2$$

- 9 coefficients obtained by fitting s(x,y) to 9 node locations (center, corners, middles)
- For Cartesian grid, this gives:

$$S_{P} = \int_{V} s_{\phi} dV = \Delta x \, \Delta y \left[a_{0} + \frac{a_{3}}{12} \Delta x^{2} + \frac{a_{4}}{12} \Delta y^{2} + \frac{a_{8}}{144} \Delta x^{2} \, \Delta y^{2} \right]$$

Only 4 coefficients a_i (linear dependences cancel), but the a_i still depend on the 9 nodal values

Approximation of VOLUME Integrals, Cont'd 2D and 3D

2D case example, Cont'd

 For a uniform Cartesian grid, one obtains the 2D integral as a function of the 9 nodal values:

$$S_P = \int_V S_\phi \ dV = \frac{\Delta x \ \Delta y}{36} \left[16s_P + 4s_s + 4s_n + 4s_w + 4s_e + s_{se} + s_{sw} + s_{ne} + s_{nw} \right]$$

- Since only value at node P is available, one must interpolate to obtain values at the nodal locations on the surface
- Has to be at least 4th order accurate interpolation to retain order of integral approximation

3D case:

- Techniques are similar to 2D case: above 4th order approx directly extended
- For Higher Order
 - Integral approximation formulas are more complex
 - Interpolation of node values are more complex

Approx. of Surface/Volume Integrals: Classic symbolic formulas

- Surface Integrals $F_e = \int_S f_{\phi} dA$
 - 2D problems (1D surface integrals)
 - Midpoint rule (2nd order): $F_e = \int_S f_\phi dA = \overline{f}_e S_e = f_e S_e + O(\Delta y^2) \approx f_e S_e$
 - Trapezoid rule (2nd order): $F_e = \int_{S_e} f_\phi dA \approx S_e \frac{(f_{ne} + f_{se})}{2} + O(\Delta y^2)$
 - Simpson's rule (4th order): $F_e = \int_{S_a} f_{\phi} dA \approx S_e \frac{(f_{ne} + 4f_e + f_{se})}{6} + O(\Delta y^4)$
 - 3D problems (2D surface integrals)
 - Midpoint rule (2nd order): $F_e = \int_S f_\phi dA \approx S_e f_e + O(\Delta y^2, \Delta z^2)$
 - Higher order more complicated to implement in 3D
- Volume Integrals: $S_{\phi} = \int_{V} S_{\phi} dV$, $\bar{\Phi} = \frac{1}{V} \int_{V} \rho \phi dV$
 - -2D/3D problems, Midpoint rule (2nd order): $S_P = \int_V s_\phi dV = \overline{s}_P V \approx s_P V$
 - -2D, bi-quadratic (4th order, Cartesian): $S_P = \frac{\Delta x \, \Delta y}{36} [16s_P + 4s_S + 4s_R + 4s_W + 4s_E + s_S + s_$

Summary: 3 basic steps to set-up a FV scheme

- Grid generation ("create CVs")
- Discretize integral/conservation equation on CVs
 - This integral eqn. is: $\frac{d\Phi}{dt} + \int_{S} \vec{F}_{\phi} \cdot \vec{n} \, dA = S_{\phi}$
 - Which becomes for V fixed in time: $V \frac{d\overline{\Phi}}{dt} + \int_{S} \overrightarrow{F}_{\phi} . \overrightarrow{n} \ dA = S_{\phi}$ where $\overline{\Phi} = \frac{1}{V} \int_{V} \rho \phi dV$ and $S_{\phi} = \int_{V} S_{\phi} dV$
 - This implies:
 - The discrete state variables are the averaged values over each cell (CV): $\overline{\Phi}_P$'s
 - Need rules to compute surface/volume integrals as a function of φ within CV
 - Evaluate integrals as a function of $\phi_{\rm e}$ values at points on and near CS/CV.
 - Need to interpolate to obtain these $\phi_{\rm e}$ values from averaged values $\; \bar{\Phi}_{_P} \, '_{\rm S} \; {
 m of } \; {
 m nearby CVs} \;$
 - Other approach: impose piece-wise function ϕ within CV, ensures that it satisfies $\bar{\Phi}_{\scriptscriptstyle D}$'s constraints, then evaluate integrals (surface and volume). We use this in the examples next.
 - Select scheme to resolve/address discontinuities
- Solve resultant discrete integral/flux eqns: (Linear) algebraic system for $\overline{\Phi}_P$'s

One-Dimensional Examples: Generic 1D FV

- Grid generation (fixed CVs)
 - Consider equispaced grid: $x_j = j\Delta x$

Image by MIT OpenCourseWare.

- Control volume *j* extends from x_i $\Delta x/2$ to x_j + $\Delta x/2$
- Boundary (surface) values are: $\phi_{i\pm 1/2} = \phi(x_{i\pm 1/2})$
- Boundary total fluxes (convective+diffusive) are: $f_{i\pm 1/2} = f(\phi_{i\pm 1/2})$
- Average cell and source values:

$$\overline{\Phi}_{j}(t) = \frac{1}{V} \int_{V} \rho \phi \, dV = \frac{1}{\Delta x} \int_{x_{j-1/2}}^{x_{j+1/2}} \phi(x, t) \, dx$$

$$S_{j}(t) = \int_{V} S_{\phi_{j}} \, dV = \int_{x_{j-1/2}}^{x_{j+1/2}} S_{\phi}(x, t) \, dx$$

$$S_{j}(t) = \int_{V} s_{\phi_{j}} dV = \int_{x_{j-1/2}}^{x_{j+1/2}} s_{\phi}(x, t) dx$$

- Discretize generic integral/conservation equation on CVs
 - The integral form $V \frac{d\Phi}{dt} + \int_{S} \vec{F}_{\phi} \cdot \vec{n} \, dA = S_{\phi}$

$$\frac{d\left(\Delta x \,\bar{\Phi}_{j}\right)}{dt} + f_{j+1/2} - f_{j-1/2} = \int_{x_{j-1/2}}^{x_{j+1/2}} s_{\phi}(x,t) \, dx$$

One-Dimensional Examples, Cont'd Note: Cell-average vs. Center value

• With $\xi = x - x_i$ and a Taylor series expansion

$$\overline{\Phi}_{j}(t) = \frac{1}{\Delta x} \int_{x_{j-1/2}}^{x_{j+1/2}} \phi(x, t) dx$$

$$= \frac{1}{\Delta x} \int_{-\Delta x/2}^{\Delta x/2} \left[\phi_{j} + \xi \frac{\partial \phi}{\partial x} \Big|_{j} + \frac{\xi^{2}}{2} \frac{\partial^{2} \phi}{\partial x^{2}} \Big|_{j} + R_{2} \right] d\xi$$

$$= \phi_{j} + \frac{\Delta x^{2}}{24} \frac{\partial^{2} \phi}{\partial x^{2}} \Big|_{j} + O(\Delta x^{4})$$

Image by MIT OpenCourseWare.

$$\Rightarrow \bar{\Phi}_j(t) = \phi_j + O(\Delta x^2)$$

 Thus: cell-average value and center value differ only by second order term

One-Dimensional Example I Linear Convection (Sommerfeld) Eqn: $\frac{\partial \phi(x,t)}{\partial t} + \frac{\partial c \phi(x,t)}{\partial x} = 0$

$$\frac{\partial \phi(x,t)}{\partial t} + \frac{\partial c \phi(x,t)}{\partial x} = 0$$

With convection only, our generic 1D eqn.

$$\frac{d\left(\Delta x \, \bar{\Phi}_{j}\right)}{dt} + f_{j+1/2} - f_{j-1/2} = \int_{x_{j-1/2}}^{x_{j+1/2}} s_{\phi}(x,t) \, dx$$

becomes:

$$\frac{d(\Delta x \, \bar{\Phi}_j)}{dt} + f_{j+1/2} - f_{j-1/2} = 0$$

- Compute surface/volume integrals as a function of φ within CV
 - Here impose/choose first piecewise-constant approximation to $\phi(x)$:

$$\phi(x) = \overline{\phi}_j \quad \forall \ x_{j-1/2} \le x \le x_{j+1/2}$$

 This gives simple flux terms. The only issue is that they differ depending on the cell from which the flux is computed:

$$f_{j+1/2}^{L} = f(\phi_{j+1/2}^{L}) = c\overline{\phi}_{j}$$
 $f_{j+1/2}^{R} = f(\phi_{j+1/2}^{R}) = c\overline{\phi}_{j+1}$

$$f_{j-1/2}^{L} = f(\phi_{j-1/2}^{L}) = c\overline{\phi}_{j-1}$$
 $f_{j-1/2}^{R} = f(\phi_{j-1/2}^{R}) = c\overline{\phi}_{j}$

One-Dimensional Example I Linear Convection (Sommerfeld) Eqn, Cont'd

- Now, we have obtained the fluxes at the CV boundaries in terms of the CV-averaged values
- We need to resolve the flux discontinuity => average values of the fluxes on either side, leading the (2nd order) estimates:

$$\hat{f}_{j-1/2} = \frac{f_{j-1/2}^L + f_{j-1/2}^R}{2} = \frac{c\overline{\phi}_{j-1} + c\overline{\phi}_j}{2} \qquad \qquad \hat{f}_{j+1/2} = \frac{f_{j+1/2}^L + f_{j+1/2}^R}{2} = \frac{c\overline{\phi}_j + c\overline{\phi}_{j+1}}{2}$$

Substitute into integral equation

$$\frac{d\left(\Delta x \, \overline{\Phi}_{j}\right)}{dt} + f_{j+1/2} - f_{j-1/2} \approx \frac{d\left(\Delta x \, \overline{\phi}_{j}\right)}{dt} + \hat{f}_{j+1/2} - \hat{f}_{j-1/2} = \frac{d\left(\Delta x \, \overline{\phi}_{j}\right)}{dt} + \frac{c\overline{\phi}_{j} + c\overline{\phi}_{j+1}}{2} - \frac{c\overline{\phi}_{j-1} + c\overline{\phi}_{j}}{2}$$

$$\Rightarrow \Delta x \frac{d\overline{\phi}_{j}}{dt} + \frac{c\overline{\phi}_{j+1} - c\overline{\phi}_{j-1}}{2} = 0$$

• With periodic BCs, storing all cell-averaged values into a vector $\bar{\Phi}$

$$\frac{d\,\bar{\mathbf{\Phi}}}{dt} + \frac{c}{2\Delta x}\mathbf{B}_P(-1,0,1)\bar{\mathbf{\Phi}} = 0$$

(where \mathbf{B}_{P} is a circulant tri-diagonal matrix, P for periodic)

MIT OpenCourseWare http://ocw.mit.edu

2.29 Numerical Fluid Mechanics Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.