2.29 Numerical Fluid Mechanics
Spring 2015 — Lecture 15
IEW Lecture 14:

- Elliptic PDEs, Continued

— Examples, Higher order finite differences

— Irregular boundaries: Dirichlet and Von Neumann BCs

— Internal boundaries

 Parabolic PDEs and Stability
— Explicit schemes (1D-space)
* Von Neumann
— Implicit schemes (1D-space): simple and Crank-Nicholson, von Neumann
— Examples
— Extensions to 2D and 3D

« Explicit and Implicit schemes
 Alternating-Direction Implicit (ADI) schemes
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TODAY (Lecture 15):
FINITE VOLUME METHODS

* Integral forms of the conservation laws
* Introduction to FV Methods

« Approximations needed and basic elements of a FV scheme

— FV grids: Cell centered (Nodes or CV-faces) vs. Cell vertex; Structured vs. Unstructured
— Approximation of surface integrals (leading to symbolic formulas)
— Approximation of volume integrals (leading to symbolic formulas)

« Summary: Steps to step-up FV scheme

« Examples: one-dimensional examples

— Generic equations
— Linear Convection (Sommerfeld eqn.): convective fluxes
« 2nd order in space, 4th order in space, links to CDS

— Unsteady Diffusion equation: diffusive fluxes

« Two approaches for 2" order in space, links to CDS
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References and Reading Assignments

« Chapter 29.4 on “The control-volume approach for elliptic
equations” of “Chapra and Canale, Numerical Methods for
Engineers, 2014/2010/2006.”

« Chapter 4 on “Finite Volume Methods” of “J. H. Ferziger and
M. Peric, Computational Methods for Fluid Dynamics.
Springer, NY, 3 edition, 2002”

» Chapter 5 on “Finite Volume Methods” of “H. Lomax, T. H.
Pulliam, D.W. Zingg, Fundamentals of Computational Fluid
Dynamics (Scientific Compultation). Springer, 2003”

» Chapter 5.6 on “Finite-Volume Methods” of T. Cebeci, J. P.
Shao, F. Kafyeke and E. Laurendeau, Computational Fluid
Dynamics for Engineers. Springer, 2005.
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(from Lecture 8-NS)

Integral Conservation Law for a scalar ¢

d d [ -
= dv+ | pp@iddd = [ quidd + Y[ s,dV
{dt '[CM p¢ dt ® Vixea p¢ JCS p¢ ( ) . . JCs q¢ . ixed /
Advective fluxes Other transports (diffusion, etc) N .
(Adv.& diff. fluxes = "convective" fluxes) UITE O1 SOUICTs ana
sinks terms (reactions, etc)

P ;3,49 ;\ Applying the Gauss Theorem, for any arbitrary CV gives:
\

// \rA

/ ! opp _

\ —+V.(pgv) = Vq +35,
CV, \ | at ¢
fixed ¥ "/J

\ S I q¢
N For a common diffusive flux model (Fick’s law, Fourier’s law):
dys = —kV¢
Conservative form op¢ _
— — +V.(pv)=V.(kV@)+s
of the PDE ot (ppv) = V. (V) +5,
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(from Lecture 8-NS)

Strong-Conservative form
of the Navier-Stokes Equations (¢ = v)

d . o . = .
Cons. of Momentum: E.[CV'OWWJF.[CSPV(V”)CZA = Jcs—p ndA+J‘CSr.ndA+J‘CVpngJ

SF
Applying the Gauss Theorem gives: = (—Vp +V.T+ pg)dV
cr
For any arbitrary CV gives: 9pv V4 Vp+V.F4+ Cauchy
T TSQ ot +V.(pV v)=-Vp+ ¢ PE Mom. Eqn.
‘0@ N
’ pl \
/
I’ \‘l" With Newtonian fluid + incompressible + constant p:
\
CV’ \ a 1
. I ) 12A% ~ ~ —~
fixed \\\ ’/év Momentum: Y +V.(pV V) =-Vp+ V¥ + pg
1 1y '
RN / Mass: Vi=0
N s

Equations are said to be in “strong conservative form” if all terms have the form of the divergence
of a vector or a tensor. For the it Cartesian component, in the general Newtonian fluid case:

. . . _ 8pv, B Oou. ©Ou.|_ 2 51/!
With Newtonian fluid only: =227 L v (poy. $) = V. é + +—L e —Zpu—Lé +
o, HVAevv) E p “[axj 8xl) “T3H %, P8, j

2.29 Numerical Fluid Mechanics PFJL Lecture 15, 5



FINITE VOLUME METHODS: Introduction

* Finite Volume Methods are based on a discretization of the
integral forms of the conservation equations:

d . ¢ - -
e pddV + ICSp¢(v.n)d4 = aidd + Y jcyﬁxedsqj dv

Advective fluxes Other transports (diffusion, etc) e
(Adv.& diff. fluxes = "convective" fluxes) Sum of sources and

sinks terms (reactions, ctc)
« Basic ideas/steps to set-up a FV scheme:
— Grid generation (CVs):
 Divide the simulation domain into a set of discrete control volumes (CVs)
« For maintenance of conservation, usually important that CVs don’t overlap
— Discretize the integral/conservation equation on CVs:

« Satisfy the integral form of the conservation law to some degree of
approximation for each of the many contiguous control volumes

— Solve the resultant discrete integral/flux equations
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FV METHODS: Introduction

. FV approach has two main advantages:

— Ensures that the discretization is conservative, locally and globally
« Mass, Momentum and often Energy are conserved in a discrete sense

* In general, if discrete equations are summed over all CVs, the global
conservation equation are retrieved (surface integrals cancel out)

» These local/global conservations can be obtained from Finite Differences (FDs)
(strong conservative form), but they are natural/direct for a FV formulation

— Does not require a coordinate transformation to be applied to irregular
meshes

« Can be applied directly to unstructured meshes (arbitrary polyhedra in 3D or
polygons in 2D)

* In our examples, we will work with

d L S
- jm) ppdV + jsm po (VidA=~[ gy iidd+[ s,dV

where V(7) is any discrete control volume. We will assume for now that they
don’t vary in time: V(t)=V
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FV METHODS
Several Approximations Needed
. To integrate discrete CV equation:
EIVp¢dV+L 06 (V.7i)dA = ‘L q,7i dA+jVs¢ dv

— A “time-marching method” needs to be used to integrate ® = j pgdV to
the next time step(s) g

dCD

I podV >

— Total flux estimate F' is required at the boundary of each CV

jS Foiidd=| pp(Fiidd+] q,n dd
e.g. F,= advection + diffusion fluxes

— Total source term (sum of sources) must be integrated over each CV
S =J- sy dV

* Hence cons. eqn. becomes: —+j FyndAd=S,

 These needs lead to basic elements of a FVV scheme, but we
also need to relate @ and ¢
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FV METHODS
Several Approximations Needed Cont’d

« “Time-marching method” for CV equation: j FyiidA=S§,

— The average of gover a CV cell, o = _J' ppdV satlsfles

V—+j FoiidA=5, (since [ podv =S/ [ ppar) )

for V fixed in time.

— Hence, after discrete time-integration, we would have updated the cell-averaged
quantities @

*For the total flux estimate /';at CV boundary: "Reconstruction” of ¢ from @

— Fluxes are functions of ¢ => to evaluate them, we need to represent ¢ within the cell

— This can be done by a piece-wise approximation which, when averaged over the
CV, gives back @

— But, each cell has a different piece-wise approximation => fluxes at boundaries can
be discontinuous. Two example of remedies:

» Take the average of these fluxes (this is a non-dissipative scheme, analogous to central
differences)
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2.29

FV METHODS

Basic Elements of FV Scheme

. Given @ for each CV, construct an approximation to ¢ (x, y, z)

in each CV and evaluate fluxes F'(x,y,z)

— Find ¢ at the boundary using this approximation, evaluate fluxes F,

— This generally leads to two distinct values of the flux for each side of

the boundary

. Apply some strategy to resolve the flux discontinuity at the

CV boundary to produce a single F over the whole

boundary

Integrate the fluxes F;to obtain [ Foida:

Surface Integrals

Compute S, by integration over each CV:

Volume Integrals

Advance the solution in time to obtain the new values of @

V_+I FyndA=S, Time-Marching
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Different Types of FV Grids

—Advantages: nodal values will represent the
mean over the CV at high(er) accuracy
(second order) since node is centroid of CV

» Other approach:

— Define nodal locations first

-~
—
-
-
—
-—
-~
~—
—
~

—Advantage: CDS approximations of
derivatives (fluxes) at boundaries are more
accurate (faces are midway between two
nodes)

CV-Faces Centered

2.29 Numerical Fluid Mechanics PFJL Lecture 15, 11



Different Types of FV Grids, Cont’d

3 2
C ijrd
— Cell centered vs. Cell vertex -
i
— Structured: e
« All mesh points lie on (a) T

intersection two/three lines
Qj

—vs. Unstructured: A A
* Meshes formed of triangular or m
quadrilateral cells in 2D, or

5
. . c) : 1 (d)
tetrahedra or pyramids in 3D (
Fig. 5.2. Two-dimensional finite-volume mesh systems. (a) Cell centered structured finite-
e Cells are identified by their volume mesh; (b) cell vertex structured finite-volume mesh; (c) cell centered unstructured
finite-volume mesh; (d) cell vertex unstructured finite-volume mesh.

numbers (can not be indentified

© Springer. All rights reserved. This content is excluded from our Creative

by Coordlnate Ilnes, e'g' l:]) Commons license. For more information, see http://ocw.mit.edu/fairuse.
Source: Cebeci, T., J. Shao, et al. Computational Fluid Dynamics for Engineers:
° Remarks From Panel to Navier-Stokes Methods with Computer Programs. Springer, 2005.

— Discretization principles the same for all grid variants

« => For now, we work with (a): Cell centered (i, is the center of the cell, similar to FD)

* In 3D, a cell has a finite volume (for extruded mesh, given distance L to plane is used = behaves as 2D)
— What changes are the relations between various locations on the grid and accuracies
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* Typical (cell centered) 2D and 3D
Cartesian CV (see conventions on 2 figs) R I
» Total/Net flux through CV boundary 0 B S B
—is sum of integrals over four (2D) or six I T e W
(3D) faces: = . oo
| Foiidd= Zk:jS f, dA
— for now, we will consider a single typical CV ‘ of
surface, the one labeled ‘e’ ! I AN
» To compute surface integral, ¢ is needed A — LT
everywhere on surface, but @ only B P4 S 2l
known at nodal (CV center) values => e
two successive approximations needed: - ’ 'OB e
ko j < AX =
— Integral estimated based on values at one
or more locations on the cell face

Notation used for a Cartesian 2D and 3D grid. Image by MIT OpenCourseWare.

— These cell faces values approximated in

terms of nodal values
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1D surfaces (2D CV)
NW N NE
- Goal: estimate F,=|_f,d4 -
. chv <\>N wo P el oEAy &F
» Simplest approximation: T e L =
midpoint rule (2" order) ;-
— F_ is approximated as a product of )

the |ntegrand at Ce”-face Center Notation used for a Cartesian 2D and 3D gridImage by MIT OpenCourseWare.

(itself approximation of mean value
over surface) and the cell-face area

F,= IS S, dA= £.S. = £S,+0O(N) =~ 1.8, [f(y):f(ye)+§f'(ye)+§—2'f"(ye)+R2j E=y—,

2!

— Since f, is not available, it has to be
obtained by interpolation

« Has to be computed with 2"9 order

accuracy to preserve accuracy of
midpoint rule
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* Goal: estimate F, =IS f, dA4

Yjs1
o NOW oN NoE .
I 1 Vi nw _'n ne
* Another 2"? order approximation: w | w [ E | e
. Yi1 sw__,s se
Trapezoid rule y T . O
— F,is approximated as: A

(fre + o) 2
F; = IS f¢ dA ~ Se % + O(Ay ) Notation used for a Cartesian 2D and 3D grid. Image by MIT OpenCourseWare.
e

— In this case, it is the fluxes at the corners £, . and /. that need to be obtained by
Interpolation

« Have to be computed with 2" order accuracy to preserve accuracy

« Higher-order approximation of surface integrals require more than 2 points /
locations on the cell-face

— Simpson'’s rule (4" order approximation):| 7 :L f,dA~S, (fne+4éfe +1) O

— Values needed at 3 locations

— To keep accuracy of integral: e.g. use cubic polynomials to estimate these values

from @ ,’s nearby
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Approximation of Surface Integrals, Cont’'d
2D surface (for 3D problems)

Goal: estimate F, =IS f4dA for 3D CV

« Simplest approximation: still the - |
midpoint rule (2" order) ° /4” Lk
— F_is approximated as: . s 1T P

Fo=| fyda=S,f, +0(&y,Az%)

Notation used for a Cartesian 2D and 3D grid. Image by MIT OpenCourseWare.

« Higher-order approximation (require values elsewhere e.g. at vertices)
possible but more complicated to implement for 3D CV

* Integration easy if variation of f, over 2D surface is assumed to have
specific easy shape to integrate

* e.g. assume 2D polynomial interpolation over surface, then complete
(symbolic) integration
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Approximation of VOLUME Integrals

Lor -rgf//// /:‘
« Goal: estimate S, = _fV s, dV N I I I
) | Y ww w :IW O”P ”: ne OEAy EE
D = ~ I _pgdv e
- Simplest approximation: product of ]j ,,
CV’s volume with the mean value of "
the integrand (approximated by the
value at the center of the node P) ‘ oT
A
— S, approximated as: i :
Sp=|, s, dV =5,V ~s,V R s
¥ .
z ,O’/ 1 Ay/
» Exact if s, is constant or linear within CV | .~ — s
« 2nd order accurate otherwise

Notation used for a Cartesian 2D and 3D grid. Image by MIT OpenCourseWare.

« Higher order approximation require more
locations than just the center
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- Goal: estimate S¢:I s, dV
- V

@:%Lpgsdr/

« Higher order approximations:

Approximation of VOLUME Integrals

Yie1

Y;

— Requires @ values at other locations than P | ”

— Obtained either by interpolating neighbor
nodal values or by using shape functions/

polynomials

» Consider 2D case (volume integral is a surface integral) using shape functions

NW N
o o

Ww

nw N ne

°=

SW S Se

w P e[

sw| g

AX

Notation used for a Cartesian 2D and 3D grid. Image by MIT OpenCourseWare.

— Bi-quadratic shape function leads to a 4" order approximation (9 coefficients)

s(x,y)=a,+ax+a,y+ a3x2 + az4y2 +axy + a6x2y + a7xy2 + azgxzy2

— 9 coefficients obtained by fitting s(x,y) to 9 node locations (center, corners, middles)

— For Cartesian grid, this gives:

S, IJVS¢ dV:AxAy{aO

+ B+ G
12

12

A+ AR

144

Ayz}

Only 4 coefficients g, (linear dependences cancel), but the ¢, still depend on the 9 nodal values

2.29
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Approximation of VOLUME Integrals, Cont'd
2D and 3D

« 2D case example, Cont'd

— For a uniform Cartesian grid, one obtains the 2D integral as a function of the 9

nodal values: Ax Ay[

S, = IVS¢ dV = 165, +4s, +4s, +4s, +4s,+s,+5,, +5,, +5, ]

— Since only value at node P is available, one must interpolate to obtain values at
the nodal locations on the surface

— Has to be at least 4" order accurate interpolation to retain order of integral
approximation

3D case:

— Techniques are similar to 2D case: above 4" order approx directly extended
— For Higher Order

 Integral approximation formulas are more complex

 Interpolation of node values are more complex
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, Approx. of Surface/Volume Integrals:
Classic symbolic formulas

- Surface Integrals  F,=|[_f,d4

— 2D problems (1D surface integrals)
« Midpoint rule (2" order):  f.= ,‘Sequ dd= 1.8, = [.S.+O(&*) = 1.8,

 Trapezoid rule (2" order): f.= _.Sefgj dA= Se(f"e—;’fse)+0(Ay2)

. 4 A
- Simpson’s rule (4" order):  F. =) f,d4~S, (o ge+fse) +O(Ay")
— 3D problems (2D surface integrals)

* Midpoint rule (2@ order):  F,=[ f,dd~S,f, +O0\’,AZ)

» Higher order more complicated to implement in 3D

— 1
* Volume Integrals: $,=|,s, 4. ®=—[ pgav

—2D/3D problems, Midpoint rule (2@ order): s, =jVs¢ AV =5,V ~s,V

— 2D, bi-quadratic (4t order, Cartesian): SPZ%
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Summary: 3 basic steps to set-up a FV scheme

. Grld generation (“create CVs”)

* Discretize integral/conservation equation on CVs

.. . dd —
— This integral eqn. is: Eﬁs Fyiidd=S,
— Which becomes for V fixed in time: V—+I FeiidA=S,
— 1
where @ :;IVp¢dV and S,=[s,dv
— This implies:
» The discrete state variables are the averaged values over each cell (CV): CT)P 'S

* Need rules to compute surface/volume integrals as a function of ¢ within CV
 Evaluate integrals as a function of ¢, values at points on and near CS/CV.

* Need to interpolate to obtain these ¢, values from averaged values ®,'s of nearby CVs

 Other approach: impose piece-wise function ¢ within CV, ensures that it satisfies ®,'s
constraints, then evaluate integrals (surface and volume). We use this in the examples next.

» Select scheme to resolve/address discontinuities

» Solve resultant discrete integral/flux egns: (Linear) algebraic system for @,'s
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 Grid generation (fixed CVs)

— Consider equispaced grid: x; = jAx

j-1/2

j+1/2

o AX —,

1 'V
j ! j+1 j+2

LR LR

X

— Control volume j extends from x;- Ax/2 to x; +Ax/2

— Boundary (surface) values are: ¢..,, = @(x,,,,,)

— Boundary total fluxes (convective+diffusive) are:

— Average cell and source values:

Image by MIT OpenCourseWare.

fjﬂ/z = f(¢jil/2)

&,(0=] ppav

|

Ax

[ p(xnydx

Xi-12

S.(t)= IVS@ av = j 5,(x,1) dx

j-1/2

* Discretize generic integral/conservation equation on CVs

2.29

— The integral form VdE+j FyiidA=S,
dt 7S

becomes:

d

Ax D,

dt

Xjr1/2
J) + fj+1/2 - fj—l/z = L S¢(x, 1) dx

j-1/2

Numerical Fluid Mechanics
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One-Dimensional Examples, Cont’d
Note: Cell-average vs. Center value

* With &= x —x; and a Taylor series expansion

1 j-1/2 j+1/2
_ X1 \+— AX —> |
B, (0)=——[ " plx. )i o—o0—+—o0—+o0—0
j-2 j-1 5 i L j+2
1 ¢ 52 0’ i i
- LR L:R
Ax d-Ax/2 [¢ é': 2 Ox2 + Rz dé: . . _
*; J X
sz 62¢ A Image by MIT OpenCourseWare.
=9, + +O(Ax")
24 ox’

= O,(t)=¢, +O(AX)

* Thus: cell-average value and center value differ only by
second order term
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One-Dimensional Example |

Linear Convection (Sommerfeld) Eqn:| 220, 200

* With convection only, our generic 1D eqn.

d (Ax 0)) ) . . .
j [ j-1/2 j+1/2
Jr + fj+1/2 - fj—l/z = J‘le/z S¢(x, 1) dx - AX —>
e O—+—0—+—0 o—

becomes: 2 e +2
_ LR LiR

d (Ax CDj) B s .

d T _fj 12 =0 e / X
! ’ Image by MIT OpenCourseWare.

« Compute surface/volume integrals as a functlon of ¢ within CV

— Here impose/choose first pleceW|se;,COnstant approxm,latlon to ¢ (x):

¢(x):¢ Vx] 1/2SX<XJ+1/2, -

— This gives simple flux terms The only issue is that they differ depending
on the cell from which. the flux is computed: \;

L"/ ]+1/2 f(¢]+1/2) C¢ fj+1/2 f(¢,+1/2) C¢J+1
] 1/2 f(¢, 12) = C¢] 1 J 1/2 f(¢] 12) = C¢
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One-Dimensional Example |
Linear Convection (Sommerfeld) Eqn, Cont'd

 Now, we have obtained the fluxes at the CV boundaries in terms
of the CV-averaged values

* We need to resolve the flux discontinuity => average values of
the fluxes on either side, leading the (2"9 order) estimates:

P fj 2 T T 1/2 _ C—j_1 "‘C% , fj+1/2 + J+1/2 _ ng +Caj+1
fj—l/2 5 — ) fj+1/2 9 o 2
« Substitute into integral equation
a(acd) Aad) . d(E) e b
T"‘fﬁl/z _fj—l/z ~ dt +fj+1/2 _fj—l/z - dt + 7 B >
d¢ ]+1 j—1 — 0
dt 2
« With periodic BCs, storing all cell-averaged values into a vector @
d® ¢ —
i + 2 Ax B,.(-10,H®=0 (where B; is a circulant tri-diagonal matrix, P for periodic)
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