2.29 Numerical Fluid Mechanics
Spring 2015 — Lecture 16

REVIEW Lecture 15:
* Finite Volume Methods

— Integral and conservative forms of the cons. laws
— Introduction

— Approximations needed and basic elements of a FV scheme
 Grid generation = Time-Marching
* FV grids: Cell centered (Nodes or CV-faces) vs. Cell vertex; Structured vs. Unstructured
» Approximation of surface integrals (leading to symbolic formulas)
» Approximation of volume integrals (leading to symbolic formulas)
« Summary: Steps to step-up a FV scheme

— One Dimensional examples

. . d Ax CT) Xj+1/2
» Generic equation: ( ~ ’)+ 2= j_l,2=jxi’il/2 5,(x,0) dx
* Linear Convection (Sommerfeld eqn): convective fluxes

— 2" order in space
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TODAY (Lecture 16):
o FINITE VOLUME METHODS

« Summary: Steps to step-up a FV scheme

« Examples: One Dimensional examples

— Generic equations

— Linear Convection (Sommerfeld eqgn): convective fluxes

« 2nd order in space, 4" order in space, links to CDS

— Unsteady Diffusion equation: diffusive fluxes

« Two approaches for 2" order in space, links to CDS
« Approximation of surface integrals and volume integrals revisited
* Interpolations and differentiations
— Upwind interpolation (UDS)
— Linear Interpolation (CDS)
— Quadratic Upwind interpolation (QUICK)

— Higher order (interpolation) schemes
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References and Reading Assignments

« Chapter 29.4 on “The control-volume approach for elliptic
equations” of “Chapra and Canale, Numerical Methods for
Engineers, 2014/2010/2006.”

« Chapter 4 on “Finite Volume Methods” of “J. H. Ferziger and
M. Peric, Computational Methods for Fluid Dynamics.
Springer, NY, 3 edition, 2002”

» Chapter 5 on “Finite Volume Methods” of “H. Lomax, T. H.
Pulliam, D.W. Zingg, Fundamentals of Computational Fluid
Dynamics (Scientific Compultation). Springer, 2003”

» Chapter 5.6 on “Finite-Volume Methods” of T. Cebeci, J. P.
Shao, F. Kafyeke and E. Laurendeau, Computational Fluid
Dynamics for Engineers. Springer, 2005.
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One-Dimensional Example |
Linear Convection (Sommerfeld) Eqn, Cont'd

* The resultant linear algebraic system is circulant tri-diagonal (for
periodic BCs)

4O € B (-1,0,)D=0
dt  2Ax

 This is as the 2" order CDS!, except that it is written in terms of
cell averaged values instead of values at FD nodes/points

— It is also 2"9 order in space
og(x1)  dedxt) _,
ot ox

* Non-dissipative (check Fourier analysis or eigenvalues of B, which are
imaginary), but can provide oscillatory errors

— Has same properties as classic CDS for

« Stability (recall tables for FD schemes, linear convection eqgn.) of time-marching
— If centered in time, centered in space, explicit: stable with CFL condition: CENSI
— If implicit in time: unconditionally stable for all Az, Ax
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One-Dimensional Example |l
Linear Convection (Sommerfeld) Eqn: 4t order approx.

j-1/2 j+1/2

* 1D exact integral equation still el ns HDNEEDN
d(Axd,) S
T"‘fﬁl/z_fj—l/z:o ok ok .

Image by MIT OpenCourseWare.

« Use 4! order accurate surface/volume integrals

— Replace piecewise-constant approx. to ¢(x) with piece-wise quadratic
approx (E&=x—x;):  ¢(&)=al’+bE+c  (note g defined over more than 1 cell)

— Satisfy @,'s (average) constraints, i.e. choose a, b, ¢ so that:

1 pe-Ax/2 — 1 p+Ax/2 — 1 e3Ax/2 —
[ D=0, [ edi=4, [ a8 di=4,

~Ax/2 Ax dAx/2

— This gives:

¢j+1 B 2%’ + gj—l b= ¢j+1 B ¢j—1 c= _5]'—1 + 265]' B 5]41

b b

2Ax? 2Ax 24

— Next, we need to evaluate the values of ¢(x) at the boundaries so as to

L R L R

compute the advective fluxes at these boundaries: 7., fio2 frins fran
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One-Dimensional Example |l
Linear Convection (Sommerfeld) Eqn: 4t order approx.

 Since f= c¢ = compute ¢ at edges:

j-1/2 j+1/2
L2045 - 0 20,459, -9,, I R
¢j—1/2 6 ’ ¢j+l/2 6 )
L:R LR
' ¢]+1 +5¢ +2¢ ' ¢51+2+5¢]+1 +2¢j X
¢j_1/2 s ¢j+1/2 Image by MIT OpenCourseWare.
6 6
* Resolve flux discontinuity —> again, use average values
J} f] 2 T J 1/2 _c jL—l/2 +C¢jR—l/2 J} _ ij+1/2 "‘fjlil/z _ J+1/2 +c J+1/2
-2 = 9 7 JH1/2 2 2
— "j_l/z _c _¢j+1 + 7¢J 1+27¢j—1 - ¢j—2 — Aj+1/2 _c _¢j+2 + 7¢]J1rlz+ 7¢] - ¢j—1

* Done with “integrals™ = we can substitute in 1D conv. eqgn:

d(Ax®, Axp,) . X dg, —@,.,+84. —8p_ +¢,_
%"‘ j+1/2_fjl/2~(7)+ J+1/2_fj—1/2 = Ax i +C - 112 - ==0
* For periodic domains: d® ., ¢ B (L1-8.0.8.1)B=0
dt  12Ax
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(from Lecture 10)

First Derivative Error
Centered finite-divided- Fxoa 1) = fix] .
difference formulas: two fllx) = —= 5 as Olh?)
versons e prsened forecch ==~ =2 B0 2 m 0o o g m s o m o m o '
erivative. The latter version p Flx) = 57 od)|!
incorporates more ferms of the = = = = = = = = = = S n e e m - - !

Taylor series expansion and is, ~_Second Derivaiive

consequently, more accurate, ) = 9l .
R piog = Hei) = 2+ fo ol
f"l:x,-l = _f(XH.:_)) + ]éf[XH.i) - ]32?;:!2.5(,] + ]éf[}(}_]] - HA’;..Q] O(h‘d)
Third Derivative
Centered f o o f
Differences fripd = 222 [”””zL bl ~ ) oly
frrix) = —flxi+al +8fxie2) = 13 Ié;; 13f1xi-1) — 8-zl + fx-a) O[/T'i]

Fourth Derivative

i) = Hxiv2) — Afxi1) + <5£ [::,-} = Aflxi-1] + flxizo) o)
I[n#[xih e —f{x|-+3:| + ]Qf[xf+2) F SQF[XH |] + zii[xll = 39“}(;_|:| + ]2'[["-'.'~2| + f(xr'—-ﬂ:l O[}’]J]
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| One-Dimensional Example Il
2nd order approx. of diffusion equation:| 22 -v =25

* 1D exact integral equation same form!

_ j-1/2 j+1/2
—d(qu)j)+f —f..,=0 —o o «‘AcX# o o—
dt jH2 S j-1/2 j2 Lo IS St j+2
. . a¢ L R L R
bUt Wlth. f=—VV¢ —Va— X
X

Image by MIT OpenCourseWare.

« Approximation of surface (flux) integral: Approach 1

— Direct: we know that to second-order (from CDS and from ¢, = ¢, + O(Ax*) )

0 4.~ 9, . 4.9, 4, -9,
fj+1/2 = _Va_f " = _V#WLO(A?&) — fj+1/2 = _V% and f 12 = ]le
— Substitute into integral equation:
MG) . B 5.2+,
(dt )+ J+1/2_fj—1/2:Ax dt +v= Ax -=0
—In the matrix form, with Dirichlet BCs:
« Semi-discrete FV scheme is as CDS in space, dd? = A‘;Z B(1,-2,1) @+ (bc)

but in terms of cell-averaged data
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One-Dimensional Example [l

~ 2nd order approx. of diffusion equation:| 22 -v 222

* Approximation of surface (flux) integral: Approach 2

— Use a piece-wise quadratic approx.: ¢(§)=a&’+bé+c = %:?:2a§+b

X
* Note that a, b, c remain as before, they are set by the volume average constraints
° . 7 =, a $+ g
Since a, b are “symmetric”: FR =L, = o, __ 0" 9 i+ O(AXY)
8x 4172 Ax
o¢ 4~
fjlil/2 = fJLl/z = Va] » =V Ax +O(Ax?)

 There are no flux discontinuities in this case

— Substitute into integral equation:

d(Axg) .

L)
T"‘ J+1/2 fjl/z

Ly
dt

120,48 _
Ax

—In the matrix form, with Dirichlet BCs:

« Semi-discrete FV scheme is as CDS in space, d;’ _ A‘;Z B(1,-2,1) @+ (be)

but in terms of cell-averaged data
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2\ Expressing fluxes at the surface based on cell-averaged (nodal)

\v

' values: Summary of Two Approaches and Boundary Conditions

. éet-up of surface/volume integrals: 2 approaches (do things in opposite order)

1. (i) Evaluate integrals using classic rules (symbolic evaluation); (ii) Then, to obtain
the unknown symbolic values, interpolate based on cell-averaged (nodal) values

WF=[ f,d4 = F=g) _
Le ¢_ } = F,=7(¢"s) Similar for other jntegrals:
(iD) §,=7(8,') = (¢ ') (S, =[5,V . B=1] ppavetc)

2. (i) Select shape of solution within CV (piecewise approximation); (ii) impose
volume constraints to express coefficients in terms of nodal values; and (iii) then
integrate. (this approach was used in the examples).

() ¢, (x)=7, (x)

Gi) [ 4, (x) = 5}3 — ¢al— (x)= ¢5P (x) _ Similar for higher dimensions:
V[ | = =) B(x,3) = T, (x,9); elc
Giii) F, = | f,, d B, (X yp) = s et

 Boundary conditions:

— Directly imposed for convective fluxes

— One-sided differences for diffusive fluxes
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“ Approach 1: Evaluate integrals symbolically, then
~ interpolate based on neighboring cell-averages

« Surface/Volume integrals: Approach 1
(i) Evaluate integrals based on classic rules (symbolic evaluation)

(i) Then, to obtain the unknown symbolic values, interpolate based on
neighboring cell-averaged (nodal) values

* |f we utilize this approach 1

— Symbolic evaluation:
 To evaluate total surface fluxes (convective + diffusive),

jF¢ndA Jp¢( )dA+j q¢ndA

values of ¢ and its gradient normal to the cell face at one or more locations on
that face are needed. They have to be expressed as a function of nodal values ¢

« Similar for volume integrals
— Next is interpolation:

» Express the ¢'s as a function of nodal values. Numerous possibilities. We

already saw some of the most common, provided again next.
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(summary from Lecture 15)

\ Approx. of Surface/Volume Integrals:
Classic symbolic formulas g g
* Surface Integrals F, = jSe f, dA (RS RN
- 2D prObIemS (1 D Surface Integrals) Notation usexd for a Cartesian 2D and 3D grid.

Image by MIT OpenCourseWare.

« Midpoint rule (2" order):  f.= ,‘Sequ dd= 1.8, = [.S.+O(&*) = 1.8,

 Trapezoid rule (2" order): f.= _.Sefgj dA= Se(f"e—;’fse)+0(Ay2)

. 4 A
- Simpson’s rule (4" order): F. =) f,d4~S, (o ge+fse) +O(Ay")
— 3D problems (2D surface integrals)

* Midpoint rule (2@ order):  F,=[ f,dd~S,f, +O0\’,AZ)

» Higher order more complicated to implement in 3D

— 1
* Volume Integrals: $,=|,s, 4. ®=—[ pgav

—2D/3D problems, Midpoint rule (2@ order): s, =jVs¢ AV =5,V ~s,V

— 2D, bi-quadratic (4t order, Cartesian): SPZ%
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Interpolations and Differentiations
(to obtain fluxes “F.” as a function of cell-average values)

» Upwind Interpolation (UDS) for convective fluxes

— Approximates ¢, by its value at the node upstream of Vi - Ny "
“e”. This is equivalent to using backward or forward- , 1
difference approx for a first derivative (depends on MV Yqw Pl Fl|
direction of flow) => Upwind Differencing Scheme, Vis sw s se :
H H o oSW o oS °
which is also called Donor-cell. g V=
. - = J .
¢, 1f (vn) >0 — o % Xivt
¢, = o
¢E lf (V .il)e < O Notation used for a Cartesian 2D and 3D grid.

Image by MIT OpenCourseWare.

— This approximation never yields oscillatory solutions (boundedness criterion), but it
is numerically diffusive:

+R,

a _ 2 82
« Taylor expansion about xp: @ =@, +(x, —x,) 8¢ + (X, —x,)" 0°¢
P

X | p 2 o’
« UDS retains only first term: 15t order scheme in space

Ax% +...

P
» Leading truncation error is “diffusive”, it has the form of a diffusive flux

fo=pg(v.n) = f=pp(v.ii)) = r1,=p(V.i),

« The numerical diffusion is p(ﬁ.ﬁ)eAx (has 2 components when flow is oblique to the grid)
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Interpolations and Differentiations
(to obtain fluxes “F.” as a function of cell-average values)

* Linear Interpolation (CDS) for convective fluxes Vo

NW N NE
— Approximates ¢, (value at face center) by its linear T | w [ -
. . ° o w P e[ |
interpolation between two nearest nodes: it

- ° oSW o oSE ®
b =47 +4,(1-1)  where 4, = e ¢ y
e E”"e P e e ;
XE _XP J i X X; Xiy1

* ). is the interpolation factor

Notation used for a Cartesian 2D and 3D grid.
Image by MIT OpenCourseWare.

— This approx. is 2" order accurate (for convective fluxes):

« Use Taylor exp. of ¢ about x,to eliminate 15t derivative in Taylor exp. of ¢, (previous slide)

. \2 A2 _ _ 2
b = +(x, —XP)% n (Xp—x,)" O°¢ +R, :% _ Pr — Dp _ (xp—x5) 0 ? R,
ox |p 2 ox”|, L Ox|p Xp—Xp 2 OX™|, Xp—Xp
R LS
op|  (x.—x,)" ¢ (x, = x,)(x; = x,) 0°¢
=@ =@ +(x,—Xp)—| +— +R, =@ A, +Pp(1-4,)—— . +R
¢e ¢P (xe xP) ax . 2 axz , 2 ¢E e ¢P( e) 2 axz . 2

« Truncation error is proportional to square of grid spacing, on uniform/non-uniform grids.

 As all approximations of order higher than one, this scheme can provide oscillatory
solutions

« Corresponds to central differences, hence its CDS name (gives avqg. if uniform grid spacing)
2.29 Numerical Fluid Mechanics PFJL Lecture 16, 14



Interpolations and Differentiations
to obtain fluxes “F.” as a function of cell-average values)

* Linear Interpolation (CDS) for diffusive fluxes

— Linear profile between two nearest nodes leads to simplest approx. of

gradient (diffusive fluxes)
Vi1 NOW ON I\AE
=g A+, (1-1) = |
S % b=t T T |
Ay
l: x—xp axe 'xE_xP Vii sw_,Ss se
-xE _ -xP y o OSW oS oSE
j I X, X; X,
— Taylor expansions of ¢’s around x,, one obtains: x

Notation used for a Cartesian 2D and 3D grid.
Image by MIT OpenCourseWare.

_ (x, — xP)2 —(xg _xe)z az¢

('xe _'X-P)3 +(xE _‘xe)3 a3¢ +R
& 2(x;—xp) ox? |

6 (x;—x,) o’

e

— Approximation is 2"d order accurate if e is midway between P and E (e.g. uniform
grid)

— When the grid is non-uniform, the formal accuracy is 1% order, but error reduction
when grid is refined is asymptotically 2"d order
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| Interpolations and Differentiations
7 (to obtain fluxes “F.” as a function of cell-average values)

 Quadratic Upwind Interpolation (QUICK), convective fluxes

Yir1

— Approx. by quadratic profile between two nearest nodes. o | O SN :
yj nw n ne

— In accord with convection, third point chosen on upstream side: e P e E S
y],l SW S Sse

* i.e. chose W if flow is from P to E, or EE if flow from E to P. y o | oSW o5 SE °
This gives: 1" j % x .
0. =P+ 8 (D —#)+ & (P~ P) i
Notation used for a Cartesian 2D and 3D grid.

i Image by MIT OpenCourseWare.
where D, U and UU denote the downstream, first upstream and second

upstream, respectively

(x, —xy) (x, —xy1) . g = (x, —xy) (xp —x,)
(xp = xy) (xp —Xy) ’ (Xy = Xy) (Xp = Xyr)
— Uniform grids: coefficients of ¢’s are 3/8 for node D, 6/8 for node U and -1/8 for node UU

— Coefficients in terms of nodal coordinates: g, =

— Somewhat more complex scheme than CDS (larger computational molecules by one node in
each direction)

— Approximation is 3" order accurate on both uniform and non-uniform grids. For uniform grids:
6 3 1 3Ax* O°¢
=—@ +=¢,——@,, — —| +
« But, when this interpolation scheme is used with midpoint rule for surface integral, becomes 2" order
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% Interpolations and Differentiations
) (to obtain fluxes “F.= f(¢.)” as a function of cell-average values)

- Higher Order Schemes (for convective/diffusive fluxes)

NW N NE
o o o

— Interpolations of order higher than 3 make sense if integrals are|
also approximated with higher order formulas Clww | ow [ BTl e
Ay

Sw_,s se

— In 1D problems, if Simpson’s rule (4™ order error) is used for Al ] L] s
the integral, a polynomial interpolation of order 3 can be used: o

EE
o

_ 2 3 ( Note: higher-order, X
¢()C) =d, + ax + d,X + a;X approach 1 —= approach 2 !)

— Notation used for a Cartesian 2D and 3D grid.
=>4 unknowns, hence 4 nodal values (W, P, E and EE) needed Image by MIT OpenCourseWare,

= Symmetric formula for ¢,: no need for “upwind” as with 0" or 2" order polynomials (donor-cell & QUICK)

— With ¢(x), one can insert ¢,= ¢(x,) in symbolic integral formula. For a uniform Cartesian grid:

27¢p +27¢; =3¢y — 30 (similar formulas used for ¢ values at corners)
48

« Convective Fluxes: ¢ =

 For Diffusive Fluxes (15t derivative):

8¢ — 27¢E — 27¢P + ¢W — ¢EE

9| _ a, +2a,x +3a,x> = for a uniform Cartesian grid:
ox|, 24 Ax

Ox

e

— This FV approximation often called a 4-order CDS (linear poly. interpol. was 2"-order CDS)

— Polynomials of higher-degree or of multi-dimensions can be used, as well as cubic splines (to
ensure continuity of first two derivatives at the boundaries). This increases the cost.
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Interpolations and Differentiations
(to obtain fluxes “F.=f(4.)" as a function of cell-average values)

. Compact Higher Order Schemes

— Polynomial of higher order lead too large computational e [ NE
molecules => use deferred-correction schemes and/or Y, T
) ww w w e| e
compact (Pade’) schemes S ERES U

— Ex. 1: obtain the coefficients of ¢(x)=a, +ax+a,x’ +ax’ by | 7| | | | |
fitting two values and two 1stderivatives at the two nodes on . ! ! '
either side of the cell face. With evaluation at x,: g

b+ ¢  Ax[O0f 0
2 8 ox|p, Ox|g

« If we use CDS to approximate derivatives, result retains 4t order:

g obetb btbi—b—bu 5
2 16
— EX. 2: use a parabola, fit the values on either side of the cell face and the derivative on the

upstream side (equivalent to the QUICK scheme, 3 order)

23 1. Ax 0¢
b=t b

— Similar schemes are obtained for derivatives (diffusive fluxes), see Ferziger and Peric (2002)

+ O(Ax4) Notation used for a Cartesian 2D and 3D grid.

* 4t order scheme: ¢ Image by MIT OpenCourseWare.

U

« Other Schemes: more complex and difficult to program

— Large number of approximations used for “convective” fluxes: Linear Upwind Scheme,
Skewed Upwind schemes, Hybrid. Blending schemes to eliminate oscillations at higher order.
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