2.29 Numerical Fluid Mechanics
Spring 2015 — Lecture 17
REVIEW Lecture 16: Finite Volume Methods

— Review: Basic elements of a FV scheme and steps to step-up a FV scheme

— One Dimensional examples

172

 Generic equation: d(A;tCD )+ s fjm—j 5,0 dx

* Linear Convection (Sommerfeld eqgn): convective fluxes
— 2" order in space, then 4" order in space, links to CDS

« Unsteady Diffusion equation: diffusive fluxes

— Two approaches for 2"d order in space, links to CDS
— Two approaches for the approximation of surface integrals (and volume integrals)

— Interpolations and differentiations (express symbolic values at surfaces as a function of nodal variables)

¢ if (v.ii) >0
« Upwind interpolation (UDS): ¢ ={¢ it (v.7i) <0 (first-order and diffusive)

* Linear Interpolation (CDS): & =¢.4.+¢,(1-4,) where 1, = ;C:i” (2n order, can be oscillatory)
o _ bty S
| o axl. 3 | b=+ & B —h)+ & (B~ o)
» Quadratic Upwind interpolation (QUICK), convective flux .
6, 3, 1 3AY° 8%
e:§¢u+§¢[)_§¢uu_4—8$ +R,

» Higher order (interpolation) schemes
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TODAY (Lecture 17):
~ Numerical Methods for the Navier-Stokes Equations

« Solution of the Navier-Stokes Equations
— Discretization of the convective and viscous terms
— Discretization of the pressure term
— Conservation principles
— Choice of Variable Arrangement on the Grid
— Calculation of the Pressure

— Pressure Correction Methods
* A Simple Explicit Scheme

* A Simple Implicit Scheme
— Nonlinear solvers, Linearized solvers and ADI solvers
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* Implicit Pressure Correction Schemes for steady problems
— QOuter and Inner iterations

* Projection Methods
— Non-Incremental and Incremental Schemes

» Fractional Step Methods:
— Example using Crank-Nicholson
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References and Reading Assignments

e Chapter 7 on “Incompressible Navier-Stokes equations” of
“J. H. Ferziger and M. Peric, Computational Methods for
Fluid Dynamics. Springer, NY, 3" edition, 2002”

e Chapter 11 on “Incompressible Navier-Stokes Equations” of
T. Cebeci, J. P. Shao, F. Kafyeke and E. Laurendeau,
Computational Fluid Dynamics for Engineers. Springer,
2005.

e Chapter 17 on “Incompressible Viscous Flows” of Fletcher,
Computational Techniques for Fluid Dynamics. Springer,
2003.
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Interpolations and Differentiations
~ (to obtain fluxes “F_= f(4.)” as a function of cell-average values)

- Higher Order Schemes (for convective/diffusive fluxes)

— Interpolations of order of accuracy higher than 3 make sense if | |
integrals are also approximated with higher order formulas | ww .

°=

Sw_,S se

— In 1D problems, if Simpson’s rule (4™ order error) is used for o € | .
the integral, a polynomial interpolation of order 3 can be used: S

( Note: higher-order,

_ 2 3
¢()C) _ aO + alx + CZZX + a3x approach 1 —= approach 2 !)

Notation used for a Cartesian 2D and 3D grid.
Image by MIT OpenCourseWare.

= Symmetric formula for ¢,: no need for “upwind” as with 0" or 2"¢ order polynomials (donor-cell & QUICK)

=>4 unknowns, hence 4 nodal values (W, P, E and EE) needed

— With ¢(x), one can insert ¢,= ¢(x,) in symbolic integral formula. For a uniform Cartesian grid:

» Convective Fluxes: ¢ = 27¢p +27¢; =3¢y — 30 (similar formulas used for ¢ values at corners)
¢ 48

 For Diffusive Fluxes (15t derivative):

9| _ a, +2a,x +3a,x> = for a uniform Cartesian grid: 09| _ 279 =270 + Gy — P
ox ox|, 24 Ax

e

— This FV approximation often called a 4t"-order CDS (linear poly. interpol. was 2"9-order CDS)

— Polynomials of higher-degree or of multi-dimensions can be used, as well as cubic splines (to
ensure continuity of first two derivatives at the boundaries). This increases the cost.
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Interpolations and Differentiations
5§ (to obtain fluxes “F.=1(¢,)” as a function of cell-average values)

. Compact Higher Order Schemes

— Polynomial of higher order lead too large computational o [ o[ e
molecules => use deferred-correction schemes and/or v T
compact (Pade’) schemes | Sqw oPene EL S

— Ex. 1: obtain the coefficients of ¢(x)=a,+a,x+a,x* +a,x’ by A I I R

fitting two values and two 1stderivatives at the two nodes on ' T T T
either side of the cell face. With evaluation at x,: T |
« 4th order scheme: ¢ ¢P + ¢E Ax a¢ _ a¢ 4 O(Ax4) Notation used for a Cartesian 2D and 3D grid.
2 8 ox » ox e Image by MIT OpenCourseWare.

« If we use CDS to approximate derivatives, result retains 4t order:
gttt Bt bbb
2 16
— EX. 2: use a parabola, fit the values on either side of the cell face and the derivative on the

upstream side (equivalent to the QUICK scheme, 3 order)

23 1. Ax 0¢
b=t 30T

— Similar schemes are obtained for derivatives (diffusive fluxes), see Ferziger and Peric (2002)

Other Schemes: more complex and difficult to program

— Large number of approximations used for “convective” fluxes: Linear Upwind Scheme,
Skewed Upwind schemes, Hybrid. Blending schemes to eliminate oscillations at higher order.
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(from Lecture 8-NS)

Integral Conservation Law for a scalar ¢

d d
- dv+ | pp@indd = [ quidd + [ s,dV
{dt '[ M p¢ dt Y Ve p¢ cs ,0¢ ( ) cs 9 Vixed ¢
Advective fluxes Other transports (diffusion, etc) N .
(Adv.& diff. fluxes = "convective" fluxes) UiTE O1 SOUICTs ana
sinks terms (reactions, etc)

P ;3,49 ;\ Applying the Gauss Theorem, for any arbitrary CV gives:
\

// \rA

/ ! opp _

\ —+V.(pgv) = Vq +35,
CV, \ | at ¢
fixed ¥ }/ﬁf

~\ S I q¢
N For a common diffusive flux model (Fick’s law, Fourier’s law):
dys = —kV¢
Conservative form op¢ _
— — +V.(pv)=V.(kV@)+s
of the PDE ot (ppv) = V. (V) +5,
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(from Lecture 8-NS)

Strong-Conservative form
of the Navier-Stokes Equations (¢ = v)

d . o . = .
Cons. of Momentum: E.[CV'OWWJF.[CSPV(V”)CIA = Jcs—p ndA+J‘CSr.ndA+J‘CVpngJ

SF
Applying the Gauss Theorem gives: = (—Vp +V.T+ pg)dV
cr
For any arbitrary CV gives: 9pv V4 Vp+V.E4+ Cauchy
T T SA ot +V.(pvv)=-Vp+ ¢ PE Mom. Eqn.
0@ N
V4 pl Vv
/ \
I’ \‘l" With Newtonian fluid + incompressible + constant p:
\
CV’ \ a 1
. I ) 12A% ~ ~ —~
fixed \\\ ’/év Momentum: e +V.(pV V) =-Vp+ V¥ + pg
1 1y '
RN / Mass: Vi=0
N s

Equations are said to be in “strong conservative form” if all terms have the form of the divergence
of a vector or a tensor. For the it Cartesian component, in the general Newtonian fluid case:

. . . _ 8pv, R Oou. ©Oou.|_ 2 51/!
With Newtonian fluid only: =227 4 v (o ) = V. é + +—L e —Zpu—Lé +
o, HVAovv) E p “[axj 8xl) 773, P8, J
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Solution of the Navier-Stokes Equations

*In ‘the FD and FV schemes, we dealt with the discretization of the generic
conservation equation opd

?+V.(p¢\7):—v. q,+s5,

* These results apply to the momentum and continuity equations (the NS
equations), e.g. for incompressible flows, constant viscosity
opv
ot
V=0
* Terms that are discretized similarly

— Unsteady and advection terms: they have the same form for ¢ scalar than for g = v

+V.(pv ¥)=-Vp+ Vv + pg

« Terms that are discretized differently
— Momentum (vector) diffusive fluxes need to be treated in a bit more details

— Pressure term has no analog in the generic conservation equation => needs
special attention. It can be regarded either as a

« source term (treated non-conservatively as a body force), or as,
 surface force (conservative treatment)

— Finally, main variable v is a vector = gives more freedom to the choice of grids
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Discretization of the
Convective and Viscous Terms

Ox .
— Use any of the schemes (FD or FV) that we have seen (including
complex geometries)

» Convective term:  v.(piv) and | pi(v.i)ds Apitt) [ ou, (ﬁ.ﬁ)de

e Viscous term: v.7 and jsf.ﬁdA o7y

8x].

1 [ - -
and | Tijej.ndSJ

oy, O
ox, O
» If uis constant, the viscous term is as in the general conservation eqn. for ¢

— For a Newtonian Fluid and incompressible flows: z; Zﬂ[

 If puvaries, its derivative needs to be evaluated (FD scheme) or its variations
accounted for in the integrals (for a FV scheme)

— For a Newtonian fluid and compressible flow:
2 Ou; .

« Additional terms need to be treated, e.g. gﬂge,-
J

— Note that in non-Cartesian coordinate systems, new terms also arise that
behave as a “body force”, and can thus be treated explicitly or implicitly

*eg —2/114—;
r
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Discretization of the Pressure term

— For conservative NS schemes, gravity/body-force terms often included in

the “pressure” term, giving: ﬁ:p_pg.Hﬂ%V.u (P& —paxé +2ﬂaie)
3 1 1 3 a

J

* “Pressure” then part of the stress tensor (shows up as divergence in NS eqgns.)

 Last term is null for incompressible flows

— In non-conservative NS forms, the pressure gradient is discretized

* FD schemes

— FD schemes seen earlier are directly applicable, but pressure can be
discretized on a different grid than the velocity grid (staggered grid)

 FV schemes

— Pressure usually treated as a surface force (conservative form):
» Forthe u;equation: [ —p é,jidS
S

« Again, schemes seen in previous lectures are applicable, but pressure nodes
can be on a different CV grid

— Pressure can also be treated non-conservatively: | —Vp.édv
» Discretization then introduces a global non-conservative error
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Conservation Principles for NS

* Momentum and Mass Conservation

— Momentum is conserved in any control volume in the sense that “it can
only change because of flow through the CV surfaces, forces acting on
these surfaces or volumetric body forces”

— This property is inherited in the CV formulation (if surface fluxes are
identical on both sides)

— Similar statements for Mass conservation

« Conservation of important secondary quantities, e.g. energy
— More complex issues

— In heat transfer, thermal energy equation can be solved after momentum
equation has been solved if properties don’t vary much with temperature T
=T is then a passive scalar, with one way coupling

— In incompressible, isothermal flows: kinetic energy is the significant energy

— In compressible flows: energy includes compressible terms

— total energy is then a separate equation (15t law) but a second derived equation
can still be written, either for kinetic or internal energy
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Conservation Principles for NS: Cont'd
i Kinetic Energy Conservation
. Derlvatlon of Kinetic energy equation

— Take dot product of momentum equation with velocity
— Integrate over a control volume CV or full volume of domain of interest

— This gives
DBy p T

where ¢; =7, + pJ, is the viscous component of the stress tensor

(vn)dA j PV dA+j (gv)ndA+j (?:vmpvmpgiv)w

al‘ CV

— In the volume integral of the RHS, the three terms are zero if the flow is inviscid
(term 1 = dissipation), incompressible (term 2) and there are no body forces (term 3)

— Other terms are surface terms and kinetic energy is conserved in this sense: =
discretization on CV should ideally lead to no contribution over the volume

« Some observations

— Guaranteeing global conservation of the discrefe kinetic energy is not automatic
since the kinetic energy equation is a consequence of the momentum equation.

— Discrete momentum and kinetic energy conservations cannot be enforced

separately (the latter can only be a consequence of the former)
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Conservation Principles for NS, Cont'd

 Some observations, Cont'd

— If a numerical method is (kinetic) energy conservative, it guarantees that
the total (kinetic) energy in the domain does not grow with time (if the
energy fluxes at boundaries are null/bounded)

» This ensures that the velocity at every point in the domain is bounded:
important stability-related property

— Since kinetic energy conservation is a consequence of momentum
conservation, global discrete kinetic energy conservation must be a
consequence of the discretized momentum equations

* It is thus a property of the discretization method and it is not guaranteed

* One way to ensure it is to impose that the discretization of the pressure
gradient and divergence of velocity are “compatible’, i.e. lead to discrete
enerqy conservation directly

— A Poisson equation is often used to compute pressure

* |t is obtained from the divergence of momentum equations, which contains the
pressure gradient (see next)

* Divergence and gradient operators must be such that mass conservation is
satisfied (especially for incompressible flows), and ideally also kinetic enerqy
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Conservation Principles for NS, Cont'd

« Some observations, Cont’d

— Time-differencing method can destroy the energy conservation property
(and mass conservation for incompressible fluid)

* Ideally, energy conservation should be automatic from the numerical scheme

« Example: Crank-Nickolson
PAV

At
— If one takes the scalar product of this equation with "'

which in C-N is approximated by, W™ = (0 ") /2

— Time derivatives are approximated by: (ulf’“ —u")  (mid-point rule)

(vel. for mid-point rule),

the result is the discretized rate of change of the kinetic energy equation

5\l 2\
pAAtVHVZj —(%) } where v’ =u, u, (summation implied)

— This the LHS of C-N for kinetic energy !!!!

 With proper choices for the other terms, the C-N scheme is energy
conservative
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B-C (Backward-Centered):

1st order accurate in time,
2nd order in space

Unconditionally stable

Crank-Nicolson:

2nd order accurate in time,

2nd order in space

Unconditionally stable

Simple implicit method

Xi-1 X; Xi+1

>< Grid point involved in time difference

Grid point involved in space difference

Crank-Nicolson method

>< t|+1
‘ “ ‘ tI+1/2
T
Xi-1 Xj Xi+1

>< Grid point involved in time difference

Grid point involved in space difference

Parabolic PDE: Implicit Schemes e ecre™
Leads to a system of equations to be solved at each time-step

B-C:
« Backward in time
* Centered in space

« Evaluates RHS at
time #+1 instead of
time ¢ (for the explicit
scheme)

« Time: centered FD, but
evaluated at mid-point

« 21 derivative in space
determined at mid-point
by averaging at r and #+1

Image by MIT OpenCourseWare. After Chapra, S., and R. Canale.

Numerical Methods for Engineers. McGraw-Hill, 2005.
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Conservation Principles for NS, Cont'd

« Some observations, Cont’'d

— Since momentum and kinetic energy (and mass cons.) are not
independent, satisfying all of them is not direct: trial and error in deriving
schemes that are conservative

— Kinetic energy conservation is particularly important in unsteady flows
(e.g. weather, ocean, turbulence, etc)

» Less important for steady flows

— Kinetic energy is not the only quantity whose discrete conservation is
desirable (and not automatic)

* Angular momentum is another one

 Important for flows in rotating machinery, internal combustion engines and
any other devices that exhibit strong rotations/swirl

— If numerical schemes do not conserve these “important” quantities,
numerical simulation is likely to get into trouble, even for stable schemes
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Choice of Variable Arrangement on the Grid

« Because the Navier-Stokes equations are coupled equations
for vector fields, several variants of the arrangement of the
computational points/nodes are possible

» Collocated arrangement

— Obvious choice: store all the variables at the same grid points and use
the same grid points or CVs for all variables: Collocated grid

Q

W

\

[
T
I
<|>ow
|

O O O O
Q=—Q Q Q

Collocated arrangement of velocity components and pressure
on FD and FV grids.

- Adva ntages Image by MIT OpenCourseWare.

» All (geometric) coefficients evaluated at the same points

» Easy to apply to multigrid procedures (collocated refinements of the grid)
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Choice of Variable Arrangement on the Grid

| Collocated arrangement: Disadvantages

— Was out of favor and not used much until the 1980s because of:

» Occurrence of oscillations in the pressure

— However, when non-orthogonal grids started to be used over complex
geometries, the situation changed

2.29

« Difficulties with pressure-velocity coupling, and requires more interpolations

» This is because the non-collocated (staggered) approach on non-
orthogonal grids is based on grid-oriented components of the (velocity)

vectors and tensors.

« This implies using
curvature terms, which are
more difficult to treat
numerically and can create
non-conservative errors

* Hence, collocated grids
became more popular with
complex geometries

® Velocities —> Pressure

Image by MIT OpenCourseWare.

Variable arrangements on a non-orthogonal grid. Illustrated are a staggered
arrangement with (i) contravarient velocity components and (ii) Cartesian velocity
components, and (iii) a colocated arrangement with Cartesian velocity
components.

Numerical Fluid Mechanics PFJL Lecture 17,
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—No need for all variables to share the same grid

—“Staggered” arrangements can be advantageous (couples p and v)

* For example, consider the Cartesian coordinates

—Advantages of staggered grids

» Several terms that require interpolation
in collocated grids can be evaluated
(to 2"d order) without interpolation

» This applies to the pressure term
(located at CV centers) and the
diffusion term (first derivative needed
at CS centers), when obtained by
central differences

» Can be shown to directly conserve
kinetic energy

« Many variations: partially staggered,
etc

2.29 Numerical Fluid Mechanics
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Fully and partially staggered arrangements of velocity components
and pressure.

Image by MIT OpenCourseWare.

Yj+1 N
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P
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sw_is se v sw_|s se S
Vi1
Ax S
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S
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(@) (b) )

Control volumes for a staggered grid for (a) mass conservation and scalar quantities,
(b) x-momentum, and (c) y-momentum

Image by MIT OpenCourseWare.
PFJL Lecture 17, 19



Choice of Variable Arrangement on the Grid

. \Staggered arrangements:
—Example with Cartesian coordinates, Cont'd

« Terms can be evaluated (to 2"9 order) without interpolation
» This applies to the pressure term (normal at center of CS). For example, along x

direction:
« Each p value on the bnd of the velocity grid is conveniently at the center the “scalar” grid

—Ipl ndS~=-p,S,
\y central differences.

« Diffusion term (first derivative at CS) obtai
For example: v g
(@] ON (@] N (@] le) on S o)
au U-.—U Y; nw ne \\\ W = P_e £
_ ~ E P n _ nw ne
( XX) 2(”8_ ~2’Ll— N WSS W\ w—lpeo E o S o
X e xE o xp Vi, sw_Is se Ay sw_|s se S
AX S
X4 ° X; X X; Xit1 : Xi-1 : Xi :
x-momentum solved on CVs of u vel., (@) (b) (©)
Control volumes for a staggered grid for (a) mass conservation and scalar quantities,
y-momentum on CVs of v vel. (b) x-momentum, and (c) y-momenturn
and COntanIty on CVS Of P. Image by MIT OpenCourseWare.
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