oy O 2.29 Numerical Fluid Mechanics
R Spring 2015 - Lecture 18
REVIEW Lecture 17:

* End of Finite Volume Methods — Cartesian grids

—Higher order (interpolation) schemes

5/017 - 2 .
] . ] +V.(pv V)=-Vp+ Vv + pg
 Solution of the Navier-Stokes Equations Vai )
V=
— Discretization of the convective and viscous terms
. . . ou.
— Discretization of the pressure term f?=p—pg.r+u§V.u (péi—pgl.xiéi+§ya—z’é’i)
— Conservation principles [ -pends
S
« Momentum and Mass
* Energy I .
= p”"H dv =— pH | (Vii)dd— [ pviidd+| (£¥).7idA+| (=2:Vi+pVi+pgv)dV
ol 2 s’ 9 ’ cst T cs cv ) ) )

— Choice of Variable Arrangement on the Grid
» Collocated and Staggered

— Calculation of the Pressure
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TODAY (Lecture 18):
~ Numerical Methods for the Navier-Stokes Equations

« Solution of the Navier-Stokes Equations
— Discretization of the convective and viscous terms
— Discretization of the pressure term
— Conservation principles
— Choice of Variable Arrangement on the Grid
— Calculation of the Pressure

— Pressure Correction Methods
« A Simple Explicit Scheme

* A Simple Implicit Scheme
— Nonlinear solvers, Linearized solvers and ADI solvers

* Implicit Pressure Correction Schemes for steady problems
— Outer and Inner iterations

“;“\\ R “v_
e L7
ol _\:;11"‘.5#\!/.\;0
N or TEC

* Projection Methods
— Non-Incremental and Incremental Schemes

» Fractional Step Methods:
— Example using Crank-Nicholson
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Calculation of the Pressure

‘/'/I'he Navier-Stokes equations do not have an independent
equation for pressure

— But the pressure gradient contributes to each of the three momentum
equations

— For incompressible fluids, mass conservation becomes a kinematic
constraint on the velocity field: we then have no dynamic equations for
both density and pressure

— For compressible fluids, mass conservation is a dynamic equation for
density

» Pressure can then be computed from density using an equation of state

» For incompressible flows (or low Mach numbers), density is not a state
variable, hence can’t be solved for

« For incompressible flows:
— Momentum equations lead to the velocities =

— Continuity equation should lead to the pressure, but it does not
contain pressure! How can p be estimated?
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Calculation of the Pressure
opv
* Navier-Stokes, incompressible: % ’

Vi=0 _--~
« Combine the two conservation egs. to-obtain an equation for p

— Since the cons. of mass has/afdi\’/érgence form, take the divergence of the
momentum equation, using cons. of mass:

* For constant viscps'rt’jénd density:

opv L . - L
V.Vp=Vip=—V. gt (VAP 1))+ V.(1iV?5)+ V.(pg) = -V.(V.(pV 1))

— This pressure equation is elliptic (Poisson egn. once velocity is known)

* It can be solved by methods we have seen earlier for elliptic equations

o (op) o [o(puu)
ox; \ Ox, - Ox, Oox
— Important Notes '

 RHS: Terms inside divergence (derivatives of momentum terms) must be approximated in a
form consistent with that of momentum eqns. However, divergence is that of cons. of mass.

 Laplacian operator comes from i) divergence of cons. of mass and ii) gradient in momentum
eqns.: consistency must be maintained, i.e. divergence and gradient discrete operators in
Laplacian should be those of the cons. of mass and of the momentum eqgns., respectively

» Best to derive pressure equation from discretized momentum/continuity equations
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2.29

Pressure-correction Methods

First solve the momentum equations to obtain the velocity
field for a known pressure

Then solve the Poisson equation to obtain an
updated/corrected pressure field

Another way: modify the continuity equation so that it
becomes hyperbolic (even though it is elliptic)
— Artificial Compressibility Methods

Notes:

— The general pressure-correction method is independent of the
discretization chosen for the spatial derivatives = in theory any
discretization can be used

— We keep density in the equations (flows are assumed
incompressible, but small density variations are considered)
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' A Simple Explicit Time Advancing Scheme

« Simple method to illustrate how the numerical Poisson
equation for the pressure is constructed and the role it plays in
enforcing continuity

» Specifics of spatial derivative scheme not important, hence, we

look at the equation discretized in space, but not in time.
5

— Use ~ to denote discrete spatial derivatives. | —
Xi
This gives: 94 __9(puY) op 0% _ dpu _ o(pul;) 6p o7 |, 6p
ot OX OX.  OX, ot OX. SX.  OX; LOX

J ! J J ! ] !

Note: P= preal _pgixi
— Simplest approach: Forward Euler for time integration, which gives:

(pu)" = (pu)" = At [Hin _%"J

* In general, the new velocity field we obtain at time n+1 does not satisfy the
discrete continuity equation: -
5(pu;) 0
OX
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A Simple Explicit Time Advancing Scheme

* How can we enforce continuity at n+1?

* Take the discrete numerical divergence of the NS eqgs.:

1

(pu)"" = (pu)" =At(Hi“_@nJ L | Slew)” S(pu) _ {i(Hi”—@nﬂ

OX. OX. OX; OX. OX.

— The first term is the divergence of the new velocity field, which we want to
be zero, so we set it to zero.

— Second term is zero if continuity was enforced at time step n

— Third term can be zero or not, but the two above conditions set it to zero

» All together, we obtain: 5 (&p") SH/

— Note that this includes the divergence operator from the continuity egn.
(outside) and the pressure gradient from the momentum equation (inside)

— Pressure gradient could be explicit (n) or implicit (n+1)
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/A Simple Explicit Time Advancing Scheme:
Summary of the Algorithm
« Start with velocity at time t, which is divergence free
» Compute RHS of pressure equation at time t,
» Solve the Poisson equation for the pressure at time t,

« Compute the velocity field at the new time step using the
momentum equation: It will be discretely divergence free

« Continue to next time step
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A Simple Implicit Time Advancing Scheme

SOme additional difficulties arise when an implicit method is
used to solve the (incompressible) NS equations

To illustrate, let’s first try the simplest: backward/implicit Euler

. o(pu,u. OT;
~ Recall: opy __S(puu) op 0% dp
ot 5Xj OX 5Xj OX.
_ . . . - ] n+l 5 uu. n+1 5 : n+1 n+l1
Implicit Euler: (pu )" =(pu,)" = At Hinﬂ_@ _at] Gleuu)T Sn Sp

Difficulties (specifics for incompressible case)

1) Set numerical divergence of velocity field at new time-step to be zero

« Take divergence of momentum, assume velocity is divergence-free at time t,
and demand zero divergence at t.,,. This leads to:

5(pui)n+l _5(pul)n :At I:ﬁ(H-n+l_@n+1):| N i(ﬂn-ﬂJ 5 [_5(puluj)n+l+5z_u n+1]

OX OX X OX OX; \ OX N OX OX. 5—xJ

! ]

* Problem: The RHS can not be computed until velocities are known at t_., (and
these velocities can not be computed until p"*! is available)

« Result: Poisson and momentum equations have to be solved simultaneously
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A Simple Implicit Time Advancing Scheme, Cont'd

2) Even if p"*1 known, a large system of nonlinear momentum

equations must be solved for the velocity field:

(ou)™ ~(pu)" = At {—

Three approaches for solution:

— First approach: nonlinear solvers

OX.

J

j

n+1

S(pu. uj)n+1+ St

OX.

[

OX

- 5pn+lJ

« Use velocities at t, for initial guess of u;"*! (or use explicit-scheme as first

guess) and then employ a nonlinear solver (Fixed-point, Newton-Raphson or

Secant methods) at each time step

* Nonlinear solver is applied to the nonlinear algebraic equations

n+1

o(puu;) N ot

n+1

OX

(pu)"" ~(pu) =t [

j

i(@”“

OX; \ OX; B OX

OX.

]

n+l1
] 5[_5(puiuj) L9y

OX.

]

n+lJ
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| A Simple Implicit Time Advancing Scheme, Cont'd

— Second approach: linearize the equations about the result at t,

u™ =u"+Au, =
_n+1 ur_1+1

U, J

= U Ui + U Au; +Uj Ay, + AU Au,

« We'd expect the last term to be of 2" order in At, it can thus be neglected (for a
2nd order in time, e.g. C-N scheme, it would still be of same order as spatial
discretization error, so can still be neglected).

* Hence, doing the same in the other terms, the (incompressible) momentum
equations are then approximated by:

S(puu)" S(puiAu) S(pAuuy O7," SAr 5p" 5Ap]

OX. OX. OX. OX. OX. OX. OX.

J ] ] ] J ! !

(pui)n+1 _(pui)n = p Ay = At (_

* One then solves for Au; and Ap (using the above mom. egn. and its Ap eqn.)

» This linearization takes advantage of the fact that the nonlinear term is only
quadratic

* However, a large coupled linear system (Au; & Ap) still needs to be inverted.
Direct solution is not recommended: use an iterative scheme

— A third interesting solution scheme: an Alternate Direction Implicit scheme
2.29 Numerical Fluid Mechanics PFJL Lecture 18, 12




(from Lecture 14)

Parabolic PDEs: Two spatial dimensions
ADI| scheme (Two Half steps in time)

® Explicit

O Implicit
/—/\J(/ //_ _____ I/‘l
B -I—"i— X N4
FIGURE 30.10 Y, O R e e o D et il
The two half-steps used in imple- " !
=1

menting the aliernating-direction bl
implicit scheme for solving paro-
bolic equations in two spatial
dimensions.
© McGraw-Hill. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

Source: Chapra, S., and R. Canale. Numerical Methods for Engineers. McGraw-Hill, 2005.

1) From time n to n+1/2: Approximation of 2" order x derivative is explicit,
while the y derivative is implicit. Hence, tri-diagonal matrix to be solved:

-I-_n_+1/2 _2-|-_n_+1/2 _|_-|-_n_+1/2
i,j-1 i,j i,j+l (O(AXZ +Ay2))

(a) First half-step (b) Second half-step

n+1/2 n n n n
Ti,j _Ti,j 2 Ti—l,j _2Ti,j +Ti+1,j

+cC°
At/2 AX® Ay?

2) From time n+1/2 to n+1: Approximation of 2" order x derivative is implicit,
while the y derivative is explicit. Another tri-diagonal matrix to be solved:

-I-_n_+1 _-I-_n_+1/2 T-E+1- . 2-|-_n_+1 _|_-|-_n+1_ T_n_+_1/2 . 2-|-_n_+1/2 +T n_+1/2
1] 1,] :Cz -1, |,12 i+1,] +C2 1,]-1 |,12 1]+l (O(sz +Ay2))
At/2 AX Ay
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(from Lecture 14)

Parabolic PDEs: Two spatial dimensions
ADI| scheme (Two Half steps in time)

i=1 i=2 i=3 i=1 i=2 i=3

J=3 [ ] ',-—._._.—>

j=2 ® o o O—

j=1 Y o>~

Y | First direction Second direction

X
The ADI method applied along the y direction and x direction.
This method only yields tridiagonal equations if applied along
the implicit dimension.

Image by MIT OpenCourseWare. After Chapra, S., and R. Canale. Numerical Methods for Engineers. McGraw-Hill, 2005.

For Ax=Ay:

1) Fromtimen ton+1/2:  |-rT50 2 +2(1+ )T —r TV =0T +2(0- 0TS + 1T
(18t tri-diagonal sys.)

2) From time n+1/2 to n+1: | =T + 20+ 0T —rT = T2 + 21— 0T 2 + 7T
(2nd tri-diagonal sys.)
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| A Simple Implicit Time Advancing Scheme, Cont'd

. Alternate Direction Implicit method

— Split the NS momentum equations into a series of 1D problems, e.g. each
being block tri-diagonal. Then, either:

— ADI nonlinear: iterate for the nonlinear terms, or,

— ADI with a local linearization:

« Ap can first be set to zero to obtain a new velocity u;” which does not satisfy

continuity:

(pu-*)nﬂ_(pu-)n:At _§(puiuj)”_5(pui”Auj)_5(pAuiu*j‘)+5rij”+5Arij_5p”
! ! 58X, OX. OX. OX. OX.  OX

J ] J ] I

* Solve a Poisson equation for the pressure correction. Taking the divergence of:
n+ n o(pu u. " J(pUuAu. " o AUi u’ " o . " oA " n
(pul) 1—(pu|) :At _ (IO 1 J) _ (IO 1 J) _ (p J) + TJ + TJ_5p _5Ap
oX; OX; OX; OX; OX;  OX  OX
7

J J J ] !

-

g
& (pu)" =(ou)" - at 2P

oX,

gives, i(%) _ Lotpu) ™ , from which Ap can be solved for.
OX \ 0% At OX
; . n+l «\N+1 5Ap
* Finally, update the velocity: (pu;) =(pui ) —Atg
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Methods for solving (steady) NS problems:
Implicit Pressure-Correction Methods

« Simple implicit approach based on linearization is most useful
for unsteady problems (with limited time-steps)

— It is not accurate for large (time) steps (because the linearization would
then lead to a large error)

— Thus, it should not be used for steady problems (which often use large
time-steps)

« Steady problems are often solved with an implicit method (with
pseudo-time), but with large time steps (no need to reproduce
the pseudo-time history)

— The aim is to rapidly converge to the steady nonlinear solution

« Many steady-state solvers are based on variations of the implicit
schemes

— They use a pressure (or pressure-correction) equation to enforce

continuity at each “pseudo-time” steps, also called “outer iteration”
2.29 Numerical Fluid Mechanics PFJL Lecture 18, 16



Methods for solving (steady) NS problems:
Implicit Pressure-Correction Methods, Cont'd

* For a fully implicit scheme, the steady state momentum equations are:
- i 5([7 U )n+1 n+1 5 p n+1
uj) —(pou) =0 — _ZF 120
(pu) = (pu) = 5X, 5xj SX;

« With the discretized matrix notation, the result is a nonlinéar algebraic system

n+1
n+1

Aui u:H—l — b:+1 _ 8_p
B ) ¢

— The b term in the RHS contains all terms that are explicit (in u") or linear in u"* or
that are coefficients function of other variables at t ., e.g. temperature

— Pressure gradient is still written in symbolic matrix difference form to indicate that
any spatial derivatives can be used

— The algebraic system is nonlinear. Again, nonlinear iterative solvers can be used.
For steady flows, the tolerance of the convergence of these nonlinear-solver
iterations does not need to be as strict as for a true time-marching scheme

— Note two types of successive iterations can be employed with pressure-correction:

» Outer iterations: (over one pseudo-time step) use nonlinear solvers which update the
elements of matrix A" as well as u"™' (uses no or approx. pressure term, then corrects it)

 Inner lterations: linear algebra to solve the linearized system with fixed coefficients
2.29 Numerical Fluid Mechanics PFJL Lecture 18, 17




Methods for solving (steady) NS problems:

; Implicit Pressure-Correction Methods, Cont'd
. Outer iteration m (pseudo- tlme) nonlinear solvers which update the elements

of the matrix A% as well as ul, . rbest estimate of exact u without any p-grad.
W op ™! I \ -1 §p ™! Lop ™!
A" u’ =b’",,;1——p = formally, u’ (A“ ) b’”,,;l—(A“" ) o =u/ (A“ ) oP
Y le. l axi - 8xi

— The resulting velocities u!”" do not satisfy continuity (hence the *) since the RHS is
obtained from p™-! at the end of the previous outer iteration - needs to correct u;”

— The final u/’ needs to satisfy: A*'u” =b” _op” and —— ou; =0 =

m

=(A") b (A7) op” ’ / o%,
u’ ox; - g;;*-——ﬁ——-_;*__l_a_p___

: _ m\ |
z(A“?*)_le;l—(A“T*)_lﬁ_pm - iOz ox,  ox K(Au ) ox ji

ox; TTTTT TSI T T T T TS
* Inner iteration: After solving a Poisson equation - 5"
for the pressure, the final velocity is calculated A" u =bl,. —6—)];
using the inner iteration (fixed coefficient A) — i

 Finally, increase m to m+1 and iterate (outer, then inner)

This scheme is a variation of previous time-marching schemes. Main differences: i) no
time-variation terms, and, ii) the terms in RHS can be explicit or implicit in outer iteration.
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Methods for solving (steady) NS problems:
Projection Methods

* These schemes that first construct a velocity field that does not
satisfy continuity, but then correct it using a pressure gradient
are called “projection methods”:

— The divergence producing part of the velocity is “projected out”

* One of the most common methods of this type are the pressure-
correction schemes

— Substitute u'=u" +u' and p"=p™' +p' in the previous equations

— Variations of these pressure-correction methods include:
« SIMPLE (Semi-Implicit Method for Pressure-Linked Equations) method:
— Neglects contributions of U’ in the pressure equation
« SIMPLEC: approximate u’ in the pressure equation as a function of p’ (better)
 SIMPLER and PISO methods: iterate to obtain U’

— There are many other variations of these methods: all are based on outer

and inner iterations until convergence at m (n+1) is achieved.
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Projection Methods: Example Scheme 1
Guermond et al, CM-AME-2006

Non-Incremental (Chorin, 1968):
= No pressure term used in predictor momentum equation

= Correct pressure based on continuity
—= Update velocity using corrected pressure in momentum equation

= (be)

oD

\L

o\ \ S(puu)™ St o\
> (pu) =(pu,) +At£ P \+5— ) : (pu) |
antl §pn+1\ \\\\
! 5X n+1 . - n+l
- i{ AN
5(pu;) 0 OX; | OX At SX on |

§Xi /
Note: advection term can be treated:

5 n+l1
AT (pu_"‘)'1+l _ At op - implicitly for u* at n+1 (need to
! ' OX iterate then), or,
- explicitly (evaluated with u at n),
as in 2d FV code and many others

=0
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Projection Methods: Example Scheme 2
Guermond et al, CM-AME-2006

Incremental (Goda, 1979):
—= Old pressure term used in predictor momentum equation
= Correct pressure based on continuity: p™' =p"+p'
—= Update velocity using pressure increment in momentum equation

N , S(puu)) )”*1 Tosp \nsl
= . = . At — . . = b
> (pu7) = (pu)" + [ 5%, 5X 5x | (pu") _=(b0)
n+l %\ N+l 5( pn+1 - pn)
u. = pU — At
(:0 |) (10 i ) 5Xi S 5(pn+1_pn) 1 s s 5(pn+1_pn)
n+1 (= :——((,OUi ) ); =0
5(,0Ui) 0 OX OX At O, on o
oX )
o AN+ S(p™' -p" Notes:
-> (pui) = (Pui ) — At ( Sx ) - this scheme assumes u’=0 in the pressure equation.
‘ It is as the SIMPLE method, but without the iterations

- As for the non-incremental scheme, the advection
term can be explicit or implicit
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Projection Methods: Example Scheme 3
Guermond et al, CM-AME-2006

Rotational Incremental (Timmermans et al, 1996):
—= Old pressure term used in predictor momentum equation

= Correct pressure based on continuity: p™' =p"+p'=p"+5p™" + f(u')
—= Update velocity using pressure increment in momentum equation

01 S(puu)) )”*1 sp 041 du  ou.
<> | pU u) +At — ; u = (bc M=y L
('0 ) (pu) ( X; 5xj SX, (p ) oD (be) i oA ox; ox
it 5(5pn+1)
u u. — At
(IO ) (p i ) 5X| (5pn+1) 1 5 . 5(5pn+1)
N+l (7 ox | ox :Zté—x((pu' ) ©on =0
5(pu;) 0 i i i .
OX, )
ol sl 5(5 p””) Notes:
(pu) " = (Pui ) — At Sx - this scheme accounts for u’ in the pressure eqn.
N : - It can be made into a SIMPLE-like method, if iterations are added
pn+1 —p"+ 5pn+1 —,Ui(( u.*)”“) - Again, the advection term can be explicit or implicit. The rotational
OX; : correction to the left assumes explicit advection
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