2.29 Numerical Fluid Mechanics
Spring 2015 — Lecture 19

REVIEW Lecture 18:

opv =-Vp+ uVv+ pg
- Solution of the Navier-Stokes Equations - _,
— Discretization of the convective and viscous terms
— Discretization of the pressure term  p=p- pgr+u§Vu (pe—Pg,x,é}Jriﬂ%e)
— Conservation principles [.—pends J
* Momentum and Mass
+ Energy i U] e
5 WP AV == P idA - j PV dA+j (2. )ndA+jCV(—g.W+pv.v+pg.v)dV

— Choice of Variable Arrangement on the Grid
» Collocated and Staggered

— Calculation of the Pressure

V.Vp=V'p=-V. LYV (V(pi )+ V.(1i75)+V.(p8) = V.(V(pi ) | — | 2(P]|__2 o(puu;)
ot ox; \ Ox, ox, Ox;
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2.29 Numerical Fluid Mechanics
Spring 2015 — Lecture 19

REVIEW Lecture 18, Cont’d:

« Solution of the Navier-Stokes Equations

— Pressure Correction Methods:
* i) Solve momentum for a known pressure leading to new velocity, then

ii) Solve Poisson to obtain a corrected pressure and
iii) Correct velocity (and possibly pressure), go to i) for next time-step.

« A Forward-Euler Explicit (Poisson for p at ¢,, then mom. for velocity at ¢, ;)

« A Backward-Euler Implicit

n+l n+l n+l n+l 5 " n+l 5 ) n+l
l l Oox ox ox, ox; | ox, ox, ox, ox,

J J J J

— Nonlinear solvers, Linearized solvers and ADI solvers

« Steady state solvers, implicit pressure correction schemes: iterate using

— Outer iterations:

m * . m " m F:m* 5 m* -1 "
A u" =b"! - S but require A" u" =b”, — S and du _ 0 = 0= ou’ _ (A“f ) S
Y X, Y ox, ox; ox,  ox; ox,

1

1 1

— Inner iterations:

m

All:-n*u;'n — bmm* _ ap
X,

1
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2.29 Numerical Fluid Mechanics
Spring 2015 — Lecture 19

REVIEW Lecture 18, Cont’d:

« Solution of the Navier-Stokes Equations

— Projection Correction Methods:

— Construct predictor velocity field that does not satisfy continuity, then correct it
using a pressure gradient

— Divergence producing part of the predictor velocity is “projected out”

* Non-Incremental:

— No pressure term used in predictor momentum eq.
 Incremental:

— Old pressure term used in predictor momentum eq.
* Rotational Incremental:

— Old pressure term used in predictor momentum eq.
— Pressure update has a rotational correction: p"" =p"+p'=p"+5p"" + f(u")
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TODAY (Lecture 19)

« Solution of the Navier-Stokes Equations

— Pressure Correction Methods

* Projection Methods

— Non-Incremental, Incremental and Rotational-incremental Schemes

— Fractional Step Methods:

« Example using Crank-Nicholson
— Streamfunction-Vorticity Methods: scheme and boundary conditions
— Artificial Compressibility Methods: scheme definitions and example
— Boundary Conditions: Wall/Symmetry and Open boundary conditions

* Time-Time-Marching Methods and ODEs. - Initial Value Problems
— Euler’'s method

— Taylor Series Methods
« Error analysis
— Simple 2nd order methods

» Heun’s Predictor-Corrector and Midpoint Method (belong to Runge-Kutta’s
methods)
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References and Reading Assignments

e Chapter 7 on “Incompressible Navier-Stokes equations” of
“J. H. Ferziger and M. Peric, Computational Methods for
Fluid Dynamics. Springer, NY, 3" edition, 2002”

e Chapter 11 on “Incompressible Navier-Stokes Equations” of
T. Cebeci, J. P. Shao, F. Kafyeke and E. Laurendeau,
Computational Fluid Dynamics for Engineers. Springer,
2005.

e Chapter 17 on “Incompressible Viscous Flows” of Fletcher,
Computational Techniques for Fluid Dynamics. Springer,
2003.
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Projection Methods: Example Scheme 3
Guermond et al, CM-AME-2006

Rotational Incremental (Timmermans et al, 1996):
—= Old pressure term used in predictor momentum equation

= Correct pressure based on continuity: p"'=p"+p'=p"+6p"" + f(u')
—= Update velocity using pressure increment in momentum equation

n+l

n+1 ;
—> (,lell* )n+1 — (pul)n + At (-M + % — Q] : (pl/ll* )n+1

ou,
= (bo) £, = [% ¥ ij

ox, ox, ox, oD Ox, Ox,
oo 6(6p™)
PU, =\ Py, — At n+ n+
( ) ( ) ox, QN o [5(5]? I)J_Li((pu*)nﬂ)' 5(5]9 1) i
n+l i ’ B
5(pu,) 0 ox;| Ox, At Ox, on .
ox,
el N o (5 p"”) Notes:
(,Ou,) - (,Ou, ) — At Sx - this scheme accounts for u’ in the pressure eqn.
N i - It can be made into a SIMPLE-like method, if iterations are added
pl=p" 4 5™ —,ui((u *)”“) - Again, the advection term can be explicit or implicit. The rotational
ox, : correction to the left assumes explicit advection
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| Other Methods: Fractional Step Methods

* In the previous methods, pressure is used to:
— Enforce continuity: it is more a mathematical variable than a physical one

— Fill the RHS of the momentum eqgns. explicitly (predictor step for velocity)

* The fractional step methods (Kim and Moin, 1985) generalize ADI

— But works on term-by-term (instead of dimension-by-dimension). Hence,
does not necessarily use pressure in the predictor step

— Let’s write the NS equations a in symbolic form:
' =u'+(C,+ D, +P) At

where C, D, and P, represent the convective, diffusive and pressure terms

— The equation is readily split into a three-steps method:

u. =u'+C, At
u. =u. +D. At
w =u +P At

— In the 3 step, the pressure gradient ensures ' satisfy the continuity eq.
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Fractional Step Methods, Cont'd

« Many variations of Fractional step methods exists
— Pressure can be a pseudo-pressure (depends on the specific steps, i.e.
whatisinu , P )

— Terms can be split further (one coordinate at a time, etc.)

— For the time-marching, Runge-Kutta explicit, direct 2" order implicit or
Crank-Nicholson scheme are often used

— Linearization and ADI are also used

— Used by Choi and Moin (1994) with central difference in space for direct
simulations of turbulence (Direct Navier Stokes, DNS)

* Next, we describe a scheme similar to that of Choi and Moin,
but using Crank-Nicholson
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Fractional Step Methods:
Example based on Crank-Nicholson

In the first step, velocity is advanced using: (pu,) —(pu,)’ :AtEH(u?);rH(uf) _ ?DHJ
xi

— Pressure from the previous time-step

— Convective, viscous and body forces are represented as an average of old and
new values (Crank-Nicolson)

— Nonlinear equations = iterate, e.g. Newton’s scheme used by Choi et al (1994)

Second-step: Half the pressure gradient term is removed from »,”, to lead u,™

(pu) (o) =-sa[ -3 22"

2 ox,

Final step: use half of the gradient of the still unknown new pressure

nt - 1 5p"
ooy =122

2 ox,

New velocity must satisfy the continuity equation (is divergence free):

— Taking the divergence of final step: s (sp™) 2 6(pu)”
ox\ox, ) M ox,

— Once p"*! is solved for, the final step above gives the new velocities
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Fractional Step Methods:
Example based on Crank-Nicholson

« Putting all steps together: (pui)m_(pui)n:A{H(u;’)zﬂ(ui)_%(g_p L op ﬂ
X, Ox,

— To represent Crank-Nicolson correctly, H(u,") should be H(u/"*')
— However, we can show that the splitting error, u**/ - u.*, is 2"d order in time and
thus consistent with C-N’s truncation error: indeed, subtract the first step from the

complete scheme, to obtain, " A S Sy AR S (S
()" =(pu) ==| S5 S5 |=~- -
l ’ 2 2 Ox,\ ot

~

— With this, one also obtains: o .
At S(p" -p") At O(p)

n+l *
(pul) _(pul) - 2 5xi - 2 5xi

which is similar to the final step, but has the form of a pressure-correction on u,” .
This later eq. can be used to obtain a Poisson eq. for p’ and replace that for p"*/

* Fractional steps methods have become rather popular
— Many variations, but all are based on the same principles (illustrated by C-N here)

— Main difference with SIMPLE-type time-marching schemes: SIMPLE schemes
solve the nonlinear pressure and momentum equations several times per time-

step in outer iterations (iterative nonlinear solve)
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(review Lecture 8-NS)

Incompressible Fluid
Vorticity Equation

Vorticity

O=curlV=VxV

Navier-Stokes Equation

oV 1 5
—+(V-V)V=—-VP+4+ V-V
ot Je.
curl of Navier-Stokes Equation
D&
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Streamfunction-Vorticity Methods

* For incompressible, 2D flows with constant fluid properties, NS

can be simplified by introducing the streamfunction y and

vorticity w as dependent variables

_Oy _ OV 4 e (@=VxV)

oy ox ox Oy
— Streamlines (lines tangent to velocity): constant v

u

— Vorticity vector is orthogonal to plane of the 2D flow

— 2D continuity is automatically satisfied: 2—”+2—V:0 !
x Oy
e In 2D, substituting 4=2% and v=-2¥ in w=2-%* leads to the
: : " oy ox ox Oy
kinematic condition: —
6w+8w:_w
ox’ oy

* The vertical component of the vorticity dynamical equation

leads: b0, o do_ (Fo do
Por P T T e T o2
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Streamfunction-Vorticity Methods, Cont'd

* Main advantages:
— Pressure does not appear in either of these equations!

— 2D-NS has been replaced by a set of 2 coupled PDEs

» Instead of 2 velocities and 1 pressure, we have only two dependent variables

 Explicit solution scheme
— Given initial velocity field, compute vorticity by differentiation

— Use this vorticity w” in the RHS of the dynamical equation for vorticity, to
obtain w™*!

— With w"*! the streamfunction y"*/ can be obtained from the Poisson
equation

« With "/, we can differentiate to obtain the velocity

— Continue to time n+2, and so on

* One issue with this scheme: boundary conditions
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Streamfunction-Vorticity Methods, Cont'd
Boundary conditions
« Boundary conditions for y

— Solid boundaries are streamlines and require: v = constant

— However, values of y at these boundaries can be computed only if
velocity field is known

« Boundary conditions for w

— Neither vorticity nor its derivatives at the boundaries are known in

advance

. ou

— For example, atthe wall: “ao,,, =-7,./ 4 " since %ﬁﬂa
wall

« Vorticity at the wall is proportional to the shear stress, but the shear stress is

often what one is trying to compute
: Oy O
— Boundary values for w can be obtained from 8;/2/ + ay'{ =-0

2

 i.e. one-sided differences at the wall: ‘2 '{ - —w
n

but this usually converges slowly and can require refinement

— Discontinuities also occur at corners
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Streamfunction-Vorticity Methods, Cont'd

— Discontinuities also occur at corners for vorticity

. The derivatives  <” and 2

ox
are not continuous at A and B

A B
» This means special treatment for
C D
ov Ou
o=——— Image by MIT OpenCourseWare.
ox Oy

e.g. refine the grid at corners
* Vorticiy-streamfunction approach useful in 2D, but is now less
popular because extension to 3D difficult

— In 3D, vorticity has 3 components, hence problem becomes as/more
expensive as NS

— Streamfunctiom is still used in quasi-2D problems

» for example, in the ocean or in the atmosphere, but even there, it has been
replaced by level-based models with a free-surface (no steady 2D continuity)
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Artificial Compressibility Methods

5

: Cémpressible flow is of great importance (e.g. aerodynamics
and turbine engine design)

 Many methods have been developed (e.g. MacCormack,
Beam-Warming, etc)

« Can they be used for incompressible flows?

* Main difference between incompressible and compressible NS
is the mathematical character of the equations

— Incompressible egs.: no time derivative in the continuity egn: V.w=0

* They have a mixed parabolic-elliptic character in time-space

— Compressible egs.: there is a time-derivative in the continuity equation:

* They have a direct hyperbolic character: 58_,0 +V.(pv)=0
4

« Allow pressure/sound waves

— How to use methods for compressible flows in incompressible flows?
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Artificial Compressibility Methods, Cont'd

. Most straightforward: Append a time derivative to the continuity equation
— Since density is constant, adding a time-rate-of-change for p not possible
— Use pressure instead (linked to p via an eqgn. of state in the general case):

1p N opu, 0
p ot Ox.

1

« where pis an artificial compressibility parameter (dimension of velocity?)

* Its value is key to the performance of such methods:
— The larger/smaller g is, the more/less incompressible the scheme is

— Large p makes the equation stiff (not well conditioned for time-integration)

» Methods most useful for solving steady flow problem (at convergence: a—pzo)
or inner-iterations in dual-time schemes. o

— To solve this new problem, many methods can be used, especially
» Time-marching schemes: what we have seen & will see (R-K, multi-steps, etc)
 Finite differences or finite volumes in space

 Alternating direction method is attractive: one spatial direction at a time
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'\ Artificial Compressibility Methods, Cont'd

« Connecting these methods with the previous ones:

— Consider the intermediate velocity field (pu;")"*! obtained from solving
momentum with the old pressure

— It does not satisfy the incompressible continuity equation: S(pu)"™ _op

OX, ot
» There remains an erroneous time rate of change of mass flux

= method needs to correct for it

« Example of an artificial compressibility scheme

— Instead of explicit in time, let’s use implicit Euler (larger time steps for

stiff term with large f) o= [sou)]”
B A [ ox } -

— Issue: velocity field at n+17 not known = coupled u, and p system solve

— To decouple the system, one could linearize about the old
(intermediate) state and transform the above equation into a Poisson
equation for the pressure or pressure correction!
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Artificial Compressibility Methods:

Example Scheme, Cont'd
* ldea 1: expand unknown u. using Taylor series in pressure
. - 1 ntl T l\
derivatives (o) ~(pu) +[5<§Z )} oy T =

— Inserting (pu, )"*! in the continuity equation leads an equation for p"*!

n+l n x, T
p —p 5 #\1+ 5(101’{ ) n+l n
+ S+ == -p") =0
55 T oe {(pu, ) [ 5| 7P

n+l n+l

— Expressing{&p—”f*)} in terms of 27 using N-S, this is a Poisson-like eq. for
pn+]_pn / op 5‘xi - i+l
. RENPETY - e | S(pu) sp" Ssp”
Idea 2: utilize directly  (pu)" ~(pu’)" + 5(;;j (55 —55 )
OX,

— Then, still take divergence of (pu,*)"*! and derive Poisson-like equation

* |deal value of f is problem dependent

— The larger the g, the more incompressible. Lowest values of 5 can be computed by
requiring that pressure waves propagate much faster than the flow velocity or
vorticity speeds
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Numerical Boundary Conditions for N-S eqns.:
Velocity

* At a wall, the no-slip boundary condition applies:

—Velocity at the wall is the wall velocity (Dirichlet)

—In some cases (e.g. fully-developed flow), the tangential velocity is constant
along the wall. By continuity, this implies no normal viscous stress:

o o y \n Y 77
_u = O :> _v _= O w 7 EP Z £
8)6' wall ay wall - . O /S\,/ O . .
ov | - . = [
= Tyy = 21”6_ — 0 Wall Near-boundary CV Symmetry plane
Y wall On the boundary conditions at a wall and a symmetry plane
6 Image by MIT OpenCourseWare.
shear u U, —u
—For the shear stress: £ =] 7, dS~= Moo dS s Sy~
s oy Yp=DVs
* At a symmetry plane, it is the opposite:
: ou
—Shear stressisnull: 7z, =u— =0 =F"" =0
. sym
—Normal stress is non-zero:
o=l %0 = = 7, ds=| 2;19015 ~ 2 Sy LS
YV lgym S Oy Yp = Vs
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Numerical Boundary Conditions for N-S eqns.:

i Pressure
* Wall/Symmetry Pressure BCs for the Momentum equations

— For the momentum equations with staggered grids, the pressure is not
required at boundaries (pressure is computed in the interior in the middle
of the CV or FD cell)

—With collocated arrangements, values at the boundary for p are needed.
They can be extrapolated from the interior (may require grid refinement)

« Wall/Symmetry Pressure BCs for the Poisson equation

—When the mass flux (velocity) is specified at a boundary, this means that:
» Correction to the mass flux (velocity) at the boundary is also zero

 This affects the continuity eq., hence the p eq.: zero normal-velocity-correction
— often means gradient of the pressure-correction at the boundary is then also
Zero |

y Yo
w W P é E
(take the dot product of the - - - S - o -
velocity correction equation | i 5 = |
W|th the normal at the bnd) Wall Near-boundary CV Symmetry plane
On the boundary conditions at a wall and a symmetry plane

Image by MIT OpenCourseWare.
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Numerical BCs for N-S eqgns:
Outflow/Outlet Conditions

-;'Outlet often most problematic since information is advected from the interior
to the (open) boundary

* If velocity is extrapolated to the far-away boundary, U_o e g, u.=u, ,

— It may need to be corrected so as to ensure that the mass flux is conserved
(same as the flux at the inlet)

— These corrected BC velocities are then kept fixed for the next iteration. This
implies no corrections to the mass flux BC, thus a von Neumann condition for the
pressure correction (note that p itself is linear along the flow if fully developed).

— The new interior velocity is then extrapolated to the boundary, etc.

— To avoid singularities for p (von Neumann at all boundaries for p), one needs to
specify p at a one point to be fixed (or impose a fixed mean p)

' 2 2

 If flow is not fully developed: % z0 = & — oeg 4 g o 22

on on on’ on’ B

« If the pressure difference between the inlet and outlet is specified, then the
velocities at these boundaries can not be specified.

— They have to be computed so that the pressure loss is the specified value

— Can be done again by extrapolation of the boundary velocities from the interior:
these extrapolated velocities can be corrected to keep a constant mass flux.

* Much research in OBC in ocean modeling
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