

2.29 Numerical Fluid Mechanics
	
Fall 2011 – Lecture 20
	

REVIEW Lecture 19: Finite Volume Methods
– Review: Basic elements of a FV scheme and steps to step-up a FV scheme
– One Dimensional examples

xd   j  x j 1/ 2 x t dx • Generic equation:  f j1/ 2  f j1/ 2   s (,)
xdt j1/ 2

• Linear Convection (Sommerfeld eqn): convective fluxes
	
– 2nd order in space, then 4th order in space, links to CDS
	

• Unsteady Diffusion equation: diffusive fluxes
– Two approaches for 2nd order in space, links to CDS

– Two approaches for the approximation of surface integrals (and volume integrals)
	
– Interpolations and differentiations (express symbolic values at surfaces as a function of nodal variables)

 
P if v n.   0

e• Upwind interpolation (UDS): e     (first-order and diffusive)
E if v n.   0 e

x  x• Linear Interpolation (CDS):      (1  ) where   e P (2nd order, can be oscillatory) e E e P e e xE  xP
 E P
x x  xe E P

       

    g ( )  g ( )e U 1 D U 2 U UU

• Quadratic Upwind interpolation (QUICK)
6 3 1 3 x3 3 

 R3e U D UU 8 8 8 48 x3
D• Higher order (interpolation) schemes

2.29 Numerical Fluid Mechanics PFJL Lecture 20, 1
1

TODAY (Lecture 20):
Time-Marching Methods and ODEs – Initial Value Problems
	

• Time-Marching Methods and Ordinary Differential Equations – Initial Value
Problems

– Euler’s method
– Taylor Series Methods

• Error analysis

– Simple 2nd order methods
• Heun’s Predictor-Corrector and Midpoint Method

– Runge-Kutta Methods

– Multistep/Multipoint Methods: Adams Methods

– Practical CFD Methods

– Stiff Differential Equations

– Error Analysis and Error Modifiers

– Systems of differential equations

2.29 Numerical Fluid Mechanics PFJL Lecture 20, 2
	
2

References and Reading Assignments
	

• Chapters 25 and 26 of “Chapra and Canale, Numerical
Methods for Engineers, 2010/2006.”

• Chapter 6 on “Methods for Unsteady Problems” of “J. H.
Ferziger and M. Peric, Computational Methods for Fluid
Dynamics. Springer, NY, 3rd edition, 2002”

• Chapter 6 on “Time-Marching Methods for ODE’s” of “H.
Lomax, T. H. Pulliam, D.W. Zingg, Fundamentals of
Computational Fluid Dynamics (Scientific Computation).
Springer, 2003”

• Chapter 5.6 on “Finite-Volume Methods” of T. Cebeci, J. P.
Shao, F. Kafyeke and E. Laurendeau, Computational Fluid
Dynamics for Engineers. Springer, 2005.

2.29 Numerical Fluid Mechanics PFJL Lecture 20, 3
	
3

Methods for Unsteady Problems – Time Marching Methods
ODEs – Initial Value Problems (IVPs)
	

• Major difference with spatial dimensions: Time advances in a single direction
	
– FD schemes: discrete values evolved in time
– FV schemes: discrete integrals evolved in time

• After discretizing the spatial derivatives (or the integrals for finite volumes),
we obtained a (coupled) system of (nonlinear) ODEs, for example:

d Φ d Φ
 B Φ  (bc) or  B(Φ t with Φ t0 0,) ; ()  Φ

dt dt

• Hence, methods used to integrate ODEs can be directly used for the time
integration of spatially discretized PDEs
– We already utilized several time-integration schemes with FD schemes. Others are

developed next.
– For IVPs, methods can be developed with a single eqn.: d f (,)t ; with ()   t0 0dt
– Note: solving steady (elliptic) problems by iterations is similar to solving time-

evolving problems. Both problems thus have analogous solution schemes.
	

2.29 Numerical Fluid Mechanics PFJL Lecture 20, 4
	
4

Ordinary Differential Equations
	
Initial Value Problems
	

ODE: x often plays the role of time (following Chapra & Canale’s and MATLAB’s notation)

y

0 0 0 0(,) ; with () (,) ; with y()d dy f t t f x y x y
dt dx
       

non-linear in y

ii) For Non-Linear Differential Equation:

i) For Linear Differential Equation:

a b x

Linear differential equations can often be solved analytically

Non-linear equations almost always require numerical solution

2.29 Numerical Fluid Mechanics PFJL Lecture 20, 5
	
5

Ordinary Differential Equations
	
Initial Value Problems: Euler’s Method

Differential Equation
	

Example

Discretization

Finite Difference (forward)

Recurrence

euler.m

Truncation error (in time): O(h2)

2.29 Numerical Fluid Mechanics PFJL Lecture 20, 6
	
6

(from Lecture 1)

Sphere Motion in Fluid Flow
Equation of Motion – 2nd Order Differential Equation

V
x

RM dx u =
dt

Taylor Series Expansion
(Here forward Euler)

Rewite to 1st Order Differential Equations

Euler’ Method - Difference Equations – First Order scheme

ui

2.29 Numerical Fluid Mechanics PFJL Lecture 20, 7
	
7

(from Lecture 1)

Sphere Motion in Fluid Flow
MATLAB Solutions

V
x

RM dx u =
dt

function [f] = dudt(t,u)
% u(1) = u
% u(2) = x
% f(2) = dx/dt = u
% f(1) = du/dt=rho*Cd*pi*r/(2m)*(v^2-2uv+u^2)
rho=1000;
Cd=1;
m=5;
r=0.05;
fac=rho*Cd*pi*r^2/(2*m);
v=1;

f(1)=fac*(v^2-2*u(1)+u(1)^2);
f(2)=u(1);
f=f';

dudt.m

x=[0:0.1:10];
%step size
h=1.0;
% Euler's method, forward finite difference
t=[0:h:10];
N=length(t);
u_e=zeros(N,1);
x_e=zeros(N,1);
u_e(1)=0;
x_e(1)=0;
for n=2:N

u_e(n)=u_e(n-1)+h*fac*(v^2-2*v*u_e(n-1)+u_e(n-1)^2);
x_e(n)=x_e(n-1)+h*u_e(n-1);

end
% Runge Kutta
u0=[0 0]';
[tt,u]=ode45(@dudt,t,u0);

figure(1)
hold off
a=plot(t,u_e,'+b');
hold on
a=plot(tt,u(:,1),'.g');
a=plot(tt,abs(u(:,1)-u_e),'+r');
...
figure(2)
hold off
a=plot(t,x_e,'+b');
hold on
a=plot(tt,u(:,2),'.g');
a=plot(tt,abs(u(:,2)-x_e),'xr');
...

sph_drag_2.m

ui

2.29 Numerical Fluid Mechanics PFJL Lecture 20, 8
	
8

(from Lecture 1)

Sphere Motion in Fluid Flow
Error Propagation

V
x

dx u =
dtRM

Error Increasing
with time

Error decreasing
with time

Velocity Position

2.29 Numerical Fluid Mechanics PFJL Lecture 20, 9
	
9

Initial Value Problems: Taylor Series Methods
“Utilize the known value of the time-derivative (the RHS)”

Taylor Series

where partial
derivatives are
denoted by:

Derivatives can be evaluated using the ODE:

+

Truncate series to k terms, insert the known derivatives Initial Value Problem:

with a discretization and step size h,

Recursion Algorithm:

where

Local Truncation Error:

+

2.29 Numerical Fluid Mechanics PFJL Lecture 20, 10
	
10

Initial Value Problems: Taylor Series Methods
	

Summary of General Taylor Series Method
	

Example:
Euler’s method

where:

Note: expensive to compute higher-order
derivatives of f(x,y), especially for spatially
discretized PDEs => other schemes needed

Numerical Example – Euler’s Method
	

=> Global Error Analysis, i.e.:

As truncation errors are added at each time
step and propagated in time, what is the final
total/global truncation error obtained?

2.29 Numerical Fluid Mechanics PFJL Lecture 20, 11
	
11

Initial Value Problems: Taylor Series Methods
	
Euler’s global/total truncation error bound, obtained recursively
	

Assume derivatives
are bounded:

=> Global Error Bound
Euler’s

Truncation error

)Exact:

Estimate (Euler):

)

Error at step n:

Since up to :



2()nO e

2.29 Numerical Fluid Mechanics PFJL Lecture 20, 12
	

O(1)
in h!

for Euler’s scheme:

= Euler’s global or total error bound
	

12

Initial Value Problems: Taylor Series Methods
	
Example of Euler’s global/total error bound
	

Example:

Exact solution:

Derivative Bounds:

x - x0 = n h =1 

y(x11)

Euler’s Method:

2.29 Numerical Fluid Mechanics PFJL Lecture 20, 13
	
13

Improving Euler’s Method
	

•		 For one-step (two-time levels) methods, the global error result for Euler
can be generalized to any method of nth order:
–		 If the truncation error is of O(hn), the global error is of O(hn-1)

•		 Euler’s method assumes that the (initial) derivative applies to the whole
time interval => 1st order global error

•		 Two simple methods modify Euler’s method by estimating the derivatives
within the time-interval
–		 Heun’s method
–		 Midpoint rule

•		 The intermediate estimates of the derivative lead to 2nd order global errors
•		 Heun’s and Midpoint methods belong to the general class of Runge-Kutta

methods
–		 introduced now since they are also linked to classic PDE integration schemes

2.29		 Numerical Fluid Mechanics PFJL Lecture 20, 14
	
14

Initial Value Problems: Heun’s method
which is also a “one-step” Predictor-Corrector scheme)
	(

Initial Slope Estimate (Euler)
	

Predictor: Euler

which allows to estimate the Endpoint Derivative/slope:

and so an Average Derivative Estimate:

Corrector

0

Notes:
• Heun becomes Trapezoid rule if fully implicit

scheme is used
• Heun’s global error is of 2nd order: O(h2)
• Convergence of iterative Heun not guaranteed +

can be expensive with PDEs

Heun can be set implicit, one can iterate => Iterative Heun:
k

k+1

2.29 Numerical Fluid Mechanics PFJL Lecture 20, 15
	
15

xi xi+1

y

x

xi xi+1

y

x

Image by MIT OpenCourseWare.

nkum43
Line

nkum43
Line

Initial Value Problems: Midpoint method

First: uses Euler to obtain a Midpoint Estimate:

Then: uses this value to obtain a Midpoint
Derivative Estimate:

Assuming that this slope is representative of the
whole interval => Midpoint Method recurrence:

Comments:
• Midpoint superior to Euler since it uses a

centered FD for the first derivative
• Midpoint’s global error is of 2nd order: O(h2)

2.29 Numerical Fluid Mechanics PFJL Lecture 20, 16
	
16

xi

xi

xi+1/2

xi+1

y

y

x

x

Image by MIT OpenCourseWare.

ndhami
Line

ndhami
Line

Initial Value Problems:
Heun’s method examples
	

func='4*exp(-0.8*x)-0.5*y';
f=inline(func,'x','y');
y0=2;
%step size
h=0.5;
% Euler's method, forward finite difference
xt=[0:h:10];
N=length(xt);
yt=zeros(N,1);
yt(1)=y0;
for n=2:N

yt(n)=yt(n-1)+h*f(xt(n-1),yt(n-1));
end
hold off
a=plot(xt,yt,'r');
set(a,'Linewidth',2)
% Heun's method
xt=[0:h:10];
N=length(xt);
yt=zeros(N,1);
yt(1)=y0;
for n=2:N

yt_0=yt(n-1)+h*f(xt(n-1),yt(n-1));
yt(n)=yt(n-1)+h*(f(xt(n-1),yt(n-1))+f(xt(n),yt_0))/2;

end
hold on
a=plot(xt,yt,'g');
set(a,'Linewidth',2)
% Exact (ode45 Runge Kutta)
x=[0:0.1:10];
hold on
[xrk,yrk]=ode45(f,x,y0);
a=plot(xrk,yrk,'b');
set(a,'Linewidth',2)

a=title(['dy/dx = f(x,y) = ' func]);
pcm.m set(a,'Fontsize',16);

a=xlabel('x');
set(a,'Fontsize',14);
a=ylabel('y');
set(a,'Fontsize',14);
a=legend('Euler','Heun','Exact');
set(a,'Fontsize',14);

Another example:
y’ = -2 x3 + 12 x2 – 20 x + 8.5

1

1

2

2

3

3 4

4

5

6

7

y

x

True solution
Heun's method
Euler's method

17

2.29 Numerical Fluid Mechanics PFJL Lecture 20, 17
	

Image by MIT OpenCourseWare.

Two-level methods for time-integration of
(spatially discretized) PDEs
	

• Four simple schemes to estimate the time integral by approximate quadrature
n 1	 n 1d	 t d n1 n

t

(, t) ; with  t0  0  dt     f (,) f  ()	 t  dt	 dt	 dttn tn

Reminder on global error order:
• Euler methods are of order 1
• Midpoint rule and Trapezoid rule are

of order 2
• Order n = truncation error cancels if

true solution is polynomial of order n

– Explicit or Forward Euler:

– Implicit or backward Euler:

– Midpoint rule (basis for the leapfrog method):

– Trapezoid rule (basis for Crank-Nicholson method):

1

1 1
1

1 1/2
1/2

1 1
1

)

(,)

(,)
1 (,) (,)
2

n n n
n

n n n
n

n n n
n

n n n n
n n

t

f t t

   (,f t

f t t

f t f t t

  
  

   



 


 


 


 

  

  

     

• Some comments

– All of these methods are two-level methods (involve two times and are at best 2nd order)
– All excepted forward Euler are implicit methods

 – Trapezoid rule often yields solutions that oscillates, but implicit Euler tends to behave well
2.29		 Numerical Fluid Mechanics PFJL Lecture 20, 18

18

f

t0 t0+∆t

t

f

t0 t0+∆t

t

f

t0 t0+∆t

t

f

t0 t0+∆t

t

Graphs showing the approximation of the time integral of f(t) using the midpoint rule,
trapezoidal rule, implicit Euler, and explicit Euler methods. Image by MIT OpenCourseWare.

tn1Runge-Kutta Methods and
n1 n    f (,) t  dt Multistep/Multipoint Methods tn

• To achieve higher accuracy in time, utilize information (known values of the
derivative in time, i.e. the RHS) at more points in time. Two approaches:
	

• Runge-Kutta Methods:
–		Additional points are between tn and tn+1, and are used strictly for computational

convenience
–		Difficulty: nth order RK requires n evaluation of the first derivative (RHS of PDE)

=> more expansive as n increases
–		But, for a given order, RK methods are more accurate and more stable than

multipoint methods of the same order.
• Multistep/Multipoint Methods:

–		Additional points are at past time steps at which data has already been computed
–		Hence for comparable order, less expansive than RK methods
–		Difficulty to start these methods
–		Examples:

• Adams Methods: fitting a polynomial to the derivatives at a number of past points in time
• Lagrangian Polynomial, explicit in time (up to tn): Adams-Bashforth methods
• Lagrangian Polynomial, implicit in time (up to tn+1): Adams-Moulton methods

2.29		 Numerical Fluid Mechanics PFJL Lecture 20, 19
	
19

Runge-Kutta Methods
	
Summary of General Taylor Series Method
	

Example:
Euler’s method

where:

Note: expensive to compute higher-order
derivatives of f(x,y), especially for spatially
discretized PDEs => other schemes needed

Aim of Runge-Kutta Methods:

• Achieve accuracy of Taylor Series
method without requiring evaluation
of higher derivatives of f(x,y)

• Obtain higher derivatives using only
the values of the RHS (first time
derivative)

• Utilize points between tn and tn+1
only

2.29 Numerical Fluid Mechanics PFJL Lecture 20, 20
	
20

Initial Value Problems - Time Integrations
	
Derivation of 2nd order Runge-Kutta Methods
	

Taylor Series Recursion:
	

Runge-Kutta Recursion:

Set a,b, to match Taylor series as much as possible.

Expand k2 in a Taylor series:

k1

Substitute k1 and k2 in Runge Kutta

Match 2nd order Taylor series

We have three equations and 4 unknowns =>
• There is an infinite number of Runge-Kutta

methods of 2nd order
• These different 2nd order RK methods give

different results if solution is not quadratic
• Usually, number of k’s (recursion size)

gives the order of the RK method.
2.29 Numerical Fluid Mechanics PFJL Lecture 20, 21
	

21

4th order Runge-Kutta Methods
	
(Most Popular, there is an ∞ number of them, as for 2nd order)
	

x
Predictor-corrector method

Second-order RK methods
b = ½, a = ½ : Heun’s method

b= 1, a = 0 : Midpoint method

b =2/3, a = 1/3 : Ralston’s Method

The k’s are different estimates of the slope

Initial Value
Problem:

2nd Order Runge-Kutta (Heun’s version)

4th Order Runge-Kutta

y

average

2.29 Numerical Fluid Mechanics PFJL Lecture 20, 22
	
22

 PFJL Lecture 20,

Forward Euler’s Method

Forward Euler’s Recurrence

4th Order Runge-Kutta

Matlab ode45 has its own convergence estimation

Note: Matlab inefficient for large problems, but
can be used for incubation
2.29 Numerical Fluid Mechanics 23

4th order Runge-Kutta Example: dy
 x, y(0)  0

dx

h=1.0;
x=[0:0.1*h:10]; rk.m
y0=0;
y=0.5*x.^2+y0;
figure(1); hold off
a=plot(x,y,'b'); set(a,'Linewidth',2);
% Euler's method, forward finite difference
xt=[0:h:10]; N=length(xt);
yt=zeros(N,1); yt(1)=y0;
for n=2:N

yt(n)=yt(n-1)+h*xt(n-1);
end
hold on; a=plot(xt,yt,'xr'); set(a,'MarkerSize',12);
% Runge Kutta
fxy='x'; f=inline(fxy,'x','y');
[xrk,yrk]=ode45(f,xt,y0);
a=plot(xrk,yrk,'.g'); set(a,'MarkerSize',30);
a=title(['dy/dx = ' fxy ', y_0 = ' num2str(y0)])
set(a,'FontSize',16);
b=legend('Exact',['Euler, h=' num2str(h)],
'Runge-Kutta (Matlab)'); set(b,'FontSize',14);

23

Multistep/Multipoint Methods
	

• Additional points are at time steps at which data has already
been computed

• Adams Methods: fitting a (Lagrange) polynomial to the
derivatives at a number of points in time
– Explicit in time (up to tn): Adams-Bashforth methods

1 (,)
n

n n k
k k

k n K

f t t   

 

  

– Implicit in time (up to tn+1): Adams-Moulton methods
1

1 (,)
n

n n k
k k

k n K

f t t   




 

  
– Coefficients βk’s can be estimated by Taylor Tables:

• Fit Taylor series so as to cancel higher-order terms

2.29		 Numerical Fluid Mechanics PFJL Lecture 20, 24
	
24

MIT OpenCourseWare
http://ocw.mit.edu

2.29 Numerical Fluid Mechanics
Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

