
  

                  

  

  

 

2.29 Numerical Fluid Mechanics
	
Fall 2011 – Lecture 20
	

REVIEW Lecture 19: Finite Volume Methods 
– Review: Basic elements of a FV scheme and steps to step-up a FV scheme 
– One Dimensional examples 

xd   j  x j 1/ 2 x t  dx  • Generic equation:  f j1/ 2  f j1/ 2   s ( , )  
xdt j1/ 2 

• Linear Convection (Sommerfeld eqn): convective fluxes
	
– 2nd order in space, then 4th order in space, links to CDS
	

• Unsteady Diffusion equation: diffusive fluxes 
– Two approaches for 2nd order in space, links to CDS 

– Two approaches for the approximation of surface integrals (and volume integrals)
	
– Interpolations and differentiations (express symbolic values at surfaces as a function of nodal variables) 

 
P if v n.   0

e• Upwind interpolation (UDS):                                e      (first-order and diffusive) 
E if v n.   0 e 

x  x• Linear Interpolation (CDS):                                         (1   ) where   e P (2nd order, can be oscillatory) e E e P e e xE  xP
 E P
x x  xe E P 

        

    g (  )  g (  )e U 1 D U 2 U  UU  

• Quadratic Upwind interpolation (QUICK) 
6 3 1 3 x3 3   

 R3e  U  D UU  8 8 8  48  x3 
D• Higher order (interpolation) schemes 
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TODAY (Lecture 20):  
Time-Marching Methods and ODEs – Initial Value Problems
	

• Time-Marching Methods and Ordinary Differential Equations – Initial Value 
Problems 

– Euler’s method 
– Taylor Series Methods 

• Error analysis 

– Simple 2nd order methods 
• Heun’s Predictor-Corrector and Midpoint Method 

– Runge-Kutta Methods 

– Multistep/Multipoint Methods: Adams Methods 

– Practical CFD Methods 

– Stiff Differential Equations 

– Error Analysis and Error Modifiers 

– Systems of differential equations 
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References and Reading Assignments
	

• Chapters 25 and 26 of “Chapra and Canale, Numerical 
Methods for Engineers, 2010/2006.” 

• Chapter 6 on “Methods for Unsteady Problems” of “J. H. 
Ferziger and M. Peric, Computational Methods for Fluid 
Dynamics. Springer, NY, 3rd edition, 2002” 

• Chapter 6 on “Time-Marching Methods for ODE’s” of “H. 
Lomax, T. H. Pulliam, D.W. Zingg, Fundamentals of 
Computational Fluid Dynamics (Scientific Computation).
Springer, 2003” 

• Chapter 5.6 on “Finite-Volume Methods” of T. Cebeci, J. P. 
Shao, F. Kafyeke and E. Laurendeau, Computational Fluid 
Dynamics for Engineers. Springer, 2005. 
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Methods for Unsteady Problems – Time Marching Methods  
ODEs – Initial Value Problems (IVPs)
	

• Major difference with spatial dimensions: Time advances in a single direction
	
– FD schemes: discrete values evolved in time 
– FV schemes: discrete integrals evolved in time 

• After discretizing the spatial derivatives (or the integrals for finite volumes), 
we obtained a (coupled) system of (nonlinear) ODEs, for example: 

d Φ d Φ
 B Φ  (bc)   or  B(Φ t with  Φ t0 0, ) ; ( )  Φ

dt dt 

• Hence, methods used to integrate ODEs can be directly used for the time 
integration of spatially discretized PDEs 
– We already utilized several time-integration schemes with FD schemes. Others are 

developed next. 
– For IVPs, methods can be developed with a single eqn.: d f (, )t ; with  ( )   t0 0dt 
– Note: solving steady (elliptic) problems by iterations is similar to solving time- 

evolving problems. Both problems thus have analogous solution schemes.
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Ordinary Differential Equations
	
Initial Value Problems
	

ODE: x often plays the role of time (following Chapra & Canale’s and MATLAB’s notation) 

y 

0 0 0 0( , ) ; with  ( ) ( , ) ; with y( )d  dy  f t t f x y x y
dt dx 
        

non-linear in y 

ii) For Non-Linear Differential Equation: 

i) For Linear Differential Equation: 

a b x 

Linear differential equations can often be solved analytically 

Non-linear equations almost always require numerical solution 

2.29 Numerical Fluid Mechanics PFJL  Lecture 20,  5
	
5



  

    

Ordinary Differential Equations
	
Initial Value Problems: Euler’s Method  

Differential Equation
	

Example 

Discretization 

Finite Difference (forward) 

Recurrence 

euler.m 

Truncation error (in time): O(h2) 
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(from Lecture 1) 

Sphere Motion in Fluid Flow 
Equation of Motion – 2nd Order Differential Equation 

V 
x 

RM dx u = 
dt 

Taylor Series Expansion 
(Here forward Euler) 

Rewite to 1st Order Differential Equations 

Euler’ Method - Difference Equations – First Order scheme 

ui 
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(from Lecture 1)

Sphere Motion in Fluid Flow 
MATLAB Solutions 

V  
x  

RM dx u = 
dt 

function [f] = dudt(t,u)
% u(1) = u
% u(2) = x
% f(2) = dx/dt = u
% f(1) = du/dt=rho*Cd*pi*r/(2m)*(v^2-2uv+u^2)
rho=1000;
Cd=1;
m=5;
r=0.05;
fac=rho*Cd*pi*r^2/(2*m);
v=1; 

f(1)=fac*(v^2-2*u(1)+u(1)^2);
f(2)=u(1);
f=f'; 

dudt.m 

x=[0:0.1:10];
%step size
h=1.0;
% Euler's method, forward finite difference
t=[0:h:10];
N=length(t);
u_e=zeros(N,1);
x_e=zeros(N,1);
u_e(1)=0;
x_e(1)=0;
for n=2:N 

u_e(n)=u_e(n-1)+h*fac*(v^2-2*v*u_e(n-1)+u_e(n-1)^2);
x_e(n)=x_e(n-1)+h*u_e(n-1);

end 
% Runge Kutta
u0=[0 0]';
[tt,u]=ode45(@dudt,t,u0); 

figure(1)
hold off 
a=plot(t,u_e,'+b');
hold on 
a=plot(tt,u(:,1),'.g');
a=plot(tt,abs(u(:,1)-u_e),'+r'); 
... 
figure(2)
hold off 
a=plot(t,x_e,'+b');
hold on 
a=plot(tt,u(:,2),'.g');
a=plot(tt,abs(u(:,2)-x_e),'xr'); 
... 

sph_drag_2.m 

ui 
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(from Lecture 1)

Sphere Motion in Fluid Flow 
Error Propagation 

V  
x  

dx u = 
dtRM 

Error Increasing 
with time 

Error decreasing 
with time 

Velocity Position 

2.29 Numerical Fluid Mechanics PFJL  Lecture 20,  9
	
9



  

Initial Value Problems: Taylor Series Methods  
“Utilize the known value of the time-derivative (the RHS)”  

Taylor Series 

where partial 
derivatives are 
denoted by: 

Derivatives can be evaluated using the ODE: 

+ 

Truncate series to k terms, insert the known derivatives Initial Value Problem: 

with a discretization and step size h, 

Recursion Algorithm: 

where 

Local Truncation Error: 

+ 
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Initial Value Problems: Taylor Series Methods
	

Summary of General Taylor Series Method
	

Example: 
Euler’s method 

where: 

Note: expensive to compute higher-order 
derivatives of f(x,y), especially for spatially 
discretized PDEs => other schemes needed 

Numerical Example – Euler’s Method
	

=> Global Error Analysis, i.e.: 

As truncation errors are added at each time 
step and propagated in time, what is the final 
total/global truncation error obtained? 
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Initial Value Problems: Taylor Series Methods
	
Euler’s global/total truncation error bound, obtained recursively
	

Assume derivatives 
are bounded: 

=> Global Error Bound 
Euler’s 

Truncation error 

)Exact: 

Estimate (Euler): 

) 

Error at step n: 

Since up to : 

 

2( )nO e  
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in h! 

for Euler’s scheme: 

= Euler’s global or total error bound
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Initial Value Problems: Taylor Series Methods
	
Example of Euler’s global/total error bound
	

Example: 

Exact solution: 

Derivative Bounds: 

x - x0 = n h =1  

y(x11) 

Euler’s Method: 
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Improving Euler’s Method
	

•		 For one-step (two-time levels) methods, the global error result for Euler 
can be generalized to any method of nth order: 
–		 If the truncation error is of O(hn), the global error is of O(hn-1) 

•		 Euler’s method assumes that the (initial) derivative applies to the whole 
time interval => 1st order global error 

•		 Two simple methods modify Euler’s method by estimating the derivatives 
within the time-interval 
–		 Heun’s method 
–		 Midpoint rule 

•		 The intermediate estimates of the derivative lead to 2nd order global errors 
•		 Heun’s and Midpoint methods belong to the general class of Runge-Kutta 

methods 
–		 introduced now since they are also linked to classic PDE integration schemes 
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Initial Value Problems: Heun’s method 
which is also a “one-step” Predictor-Corrector scheme)
	(

Initial Slope Estimate (Euler)
	

Predictor: Euler 

which allows to estimate the Endpoint Derivative/slope: 

and so an Average Derivative Estimate: 

Corrector 

0 

Notes: 
• Heun becomes Trapezoid rule if fully implicit

scheme is used 
• Heun’s global error is of 2nd order: O(h2)
• Convergence of iterative Heun not guaranteed +

can be expensive with PDEs

Heun can be set implicit, one can iterate => Iterative Heun: 
k 

k+1 
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Initial Value Problems: Midpoint method 

First: uses Euler to obtain a Midpoint Estimate: 

Then: uses this value to obtain a Midpoint 
Derivative Estimate: 

Assuming that this slope is representative of the 
whole interval => Midpoint Method recurrence: 

Comments: 
• Midpoint superior to Euler since it uses a

centered FD for the first derivative
• Midpoint’s global error is of 2nd order: O(h2)
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Initial Value Problems:  
Heun’s method examples
	

func='4*exp(-0.8*x)-0.5*y'; 
f=inline(func,'x','y'); 
y0=2; 
%step size 
h=0.5; 
% Euler's method, forward finite difference 
xt=[0:h:10]; 
N=length(xt); 
yt=zeros(N,1); 
yt(1)=y0; 
for n=2:N 

yt(n)=yt(n-1)+h*f(xt(n-1),yt(n-1)); 
end 
hold off 
a=plot(xt,yt,'r'); 
set(a,'Linewidth',2) 
% Heun's method 
xt=[0:h:10]; 
N=length(xt); 
yt=zeros(N,1); 
yt(1)=y0; 
for n=2:N 

yt_0=yt(n-1)+h*f(xt(n-1),yt(n-1)); 
yt(n)=yt(n-1)+h*(f(xt(n-1),yt(n-1))+f(xt(n),yt_0))/2; 

end 
hold on 
a=plot(xt,yt,'g'); 
set(a,'Linewidth',2) 
% Exact (ode45 Runge Kutta) 
x=[0:0.1:10]; 
hold on 
[xrk,yrk]=ode45(f,x,y0); 
a=plot(xrk,yrk,'b'); 
set(a,'Linewidth',2) 

a=title(['dy/dx = f(x,y) = ' func]); 
pcm.m set(a,'Fontsize',16); 

a=xlabel('x'); 
set(a,'Fontsize',14); 
a=ylabel('y'); 
set(a,'Fontsize',14); 
a=legend('Euler','Heun','Exact'); 
set(a,'Fontsize',14); 

Another example: 
y’ = -2 x3 + 12 x2 – 20 x + 8.5 

1

1

2

2

3

3 4

4

5

6

7

y

x

True solution
Heun's method
Euler's method
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Two-level methods for time-integration of 
(spatially discretized) PDEs
	

• Four simple schemes to estimate the time integral by approximate quadrature
n 1	 n 1d	 t d n1 n

t 

( , t ) ; with   t0  0  dt      f ( , ) f  ( )	 t  dt	 dt	 dttn tn 

Reminder on global error order: 
• Euler methods are of order 1
• Midpoint rule and Trapezoid rule are

of order 2
• Order n = truncation error cancels if

true solution is polynomial of order n

– Explicit or Forward Euler:

– Implicit or backward Euler:

– Midpoint rule (basis for the leapfrog method):

– Trapezoid rule (basis for Crank-Nicholson method):

1 

1 1 
1 

1  1/2
1/2 

1 1 
1 

) 

( , ) 

( , ) 
1 ( ,  )  (  ,  )
2 

n n n 
n 

n n n 
n 

n n n 
n 

n n n n 
n n 

t

f t  t

   ( ,f t  

f t  t

f t  f t  t

   
   

    

 

  
 

  
 

  
 

  

   

   

      

• Some comments

– All of these methods are two-level methods (involve two times and are at best 2nd order)
– All excepted forward Euler are implicit methods

  – Trapezoid rule often yields solutions that oscillates, but implicit Euler tends to behave well
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tn1Runge-Kutta Methods and 
n1 n    f ( ,  )  t  dt  Multistep/Multipoint Methods tn 

• To achieve higher accuracy in time, utilize information (known values of the  
derivative in time, i.e. the RHS) at more points in time. Two approaches:
	

• Runge-Kutta Methods: 
–		Additional points are between tn and tn+1, and are used strictly for computational 

convenience 
–		Difficulty: nth order RK requires n evaluation of the first derivative (RHS of PDE) 

=> more expansive as n increases 
–		But, for a given order, RK methods are more accurate and more stable than 

multipoint methods of the same order. 
• Multistep/Multipoint Methods: 

–		Additional points are at past time steps at which data has already been computed 
–		Hence for comparable order, less expansive than RK methods 
–		Difficulty to start these methods 
–		Examples: 

• Adams Methods: fitting a polynomial to the derivatives at a number of past points in time 
• Lagrangian Polynomial, explicit in time (up to tn): Adams-Bashforth methods 
• Lagrangian Polynomial, implicit in time (up to tn+1): Adams-Moulton methods 
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Runge-Kutta Methods
	
Summary of General Taylor Series Method
	

Example: 
Euler’s method 

where: 

Note: expensive to compute higher-order 
derivatives of f(x,y), especially for spatially 
discretized PDEs => other schemes needed 

Aim of Runge-Kutta Methods: 

• Achieve accuracy of Taylor Series
method without requiring evaluation
of higher derivatives of f(x,y)

• Obtain higher derivatives using only
the values of the RHS (first time
derivative)

• Utilize points between tn and tn+1
only 
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Initial Value Problems - Time Integrations
	
Derivation of 2nd order Runge-Kutta Methods
	

Taylor Series Recursion:
	

Runge-Kutta Recursion: 

Set a,b, to match Taylor series as much as possible. 

Expand k2 in a Taylor series: 

k1 

Substitute k1 and k2 in Runge Kutta 

Match 2nd order Taylor series 

We have three equations and 4 unknowns => 
• There is an infinite number of Runge-Kutta 

methods of 2nd order 
• These different 2nd order RK methods give

different results if solution is not quadratic
• Usually, number of k’s (recursion size)

gives the order of the RK method.
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4th order Runge-Kutta Methods
	
(Most Popular, there is an ∞ number of them, as for 2nd order)
	

x 
Predictor-corrector method 

Second-order RK methods 
b = ½, a = ½ : Heun’s method 

b= 1, a = 0 : Midpoint method 

b =2/3, a = 1/3 : Ralston’s Method 

The k’s are different estimates of the slope 

Initial Value 
Problem: 

2nd Order Runge-Kutta (Heun’s version) 

4th Order Runge-Kutta 

y 

average 
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  PFJL  Lecture 20,  

Forward Euler’s Method 

Forward Euler’s Recurrence 

4th Order Runge-Kutta 

Matlab ode45 has its own convergence estimation 

Note: Matlab inefficient for large problems, but 
can be used for incubation 
2.29 Numerical Fluid Mechanics 23 

4th order Runge-Kutta Example: dy 
 x, y(0)  0

dx 

h=1.0;
x=[0:0.1*h:10]; rk.m
y0=0;
y=0.5*x.^2+y0;
figure(1); hold off 
a=plot(x,y,'b'); set(a,'Linewidth',2); 
% Euler's method, forward finite difference 
xt=[0:h:10]; N=length(xt); 
yt=zeros(N,1); yt(1)=y0; 
for n=2:N  

yt(n)=yt(n-1)+h*xt(n-1);
end 
hold on; a=plot(xt,yt,'xr'); set(a,'MarkerSize',12);
% Runge Kutta
fxy='x'; f=inline(fxy,'x','y');
[xrk,yrk]=ode45(f,xt,y0);
a=plot(xrk,yrk,'.g'); set(a,'MarkerSize',30);
a=title(['dy/dx = ' fxy ', y_0 = ' num2str(y0)])
set(a,'FontSize',16);
b=legend('Exact',['Euler, h=' num2str(h)],
'Runge-Kutta (Matlab)'); set(b,'FontSize',14); 
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Multistep/Multipoint Methods
	

• Additional points are at time steps at which data has already
been computed

• Adams Methods: fitting a (Lagrange) polynomial to the
derivatives at a number of points in time
– Explicit in time (up to tn): Adams-Bashforth methods

1 ( ,  )  
n 

n n k 
k k 

k n  K

f t  t    

   

   

– Implicit in time (up to tn+1): Adams-Moulton methods
1 

1 ( ,  )  
n 

n n k 
k k 

k n  K

f t  t    
 

 

   

   
– Coefficients  βk’s can be estimated by Taylor Tables:

• Fit Taylor series so as to cancel higher-order terms
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