

2.29 Numerical Fluid Mechanics Spring 2015 – Lecture 21

REVIEW Lecture 20: Time-Marching Methods and ODEs-IVPs

Time-Marching Methods and ODEs – Initial Value Problems

$$\frac{d\overline{\Phi}}{dt} = \mathbf{B}\overline{\Phi} + (\mathbf{bc}) \quad \text{or} \quad \frac{d\overline{\Phi}}{dt} = \mathbf{B}(\overline{\Phi}, t) \quad ; \quad \text{with } \overline{\Phi}(t_0) = \overline{\Phi}_0$$

- Euler's method
- Taylor Series Methods
 - Error analysis: for two time-levels, if truncation error is of $O(h^n)$, the global error is of $O(h^{n-1})$
- Simple 2nd order methods
 - Heun's Predictor-Corrector and Midpoint Method (belong to Runge-Kutta's methods)
- To achieve higher accuracy in time: utilize information (known values of the derivative in time, i.e. the RHS f) at more points in time, equate to Taylor series
 - Runge-Kutta Methods
 - Additional points are between t_n and t_{n+1}
 - Multistep/Multipoint Methods: Adams Methods
 - Additional points are at past time steps
 - Practical CFD Methods
 - Implicit Nonlinear systems
 - Deferred-correction Approach

TODAY (Lecture 21): End of Time-Marching Methods, Grid Generation

- Time-Marching Methods and ODEs IVPs: End
 - Multistep/Multipoint Methods
 - Implementation of Implicit Time-Marching: Nonlinear systems
 - Deferred-correction Approach
- Complex Geometries
 - Different types of grids
 - Choice of variable arrangements: Cartesian or grid-oriented velocity, staggered or collocated var.
- Grid Generation
 - Basic concepts and structured grids
 - Stretched grids
 - Algebraic methods (for stretched grids)
 - General coordinate transformation
 - Differential equation methods
 - Conformal mapping methods
 - Unstructured grid generation
 - Delaunay Triangulation
 - Advancing Front method

References and Reading Assignments Time-Marching

- Chapters 25 and 26 of "Chapra and Canale, Numerical Methods for Engineers, 2014/2010/2006."
- Chapter 6 on "Methods for Unsteady Problems" of "J. H. Ferziger and M. Peric, Computational Methods for Fluid Dynamics. Springer, NY, 3rd edition, 2002"
- Chapter 6 on "Time-Marching Methods for ODE's" of "H. Lomax, T. H. Pulliam, D.W. Zingg, Fundamentals of Computational Fluid Dynamics (Scientific Computation). Springer, 2003"

Multistep/Multipoint Methods

- Additional points are at time steps at which data has already been computed
- Adams Methods: fitting a (Lagrange) polynomial to the derivatives at a number of points in time
 - Explicit in time (up to t_n): Adams-Bashforth methods

$$\phi^{n+1} - \phi^n = \sum_{k=n-K}^n \beta_k f(t_k, \phi^k) \Delta t$$

– Implicit in time (up to t_{n+1}): Adams-Moulton methods

$$\phi^{n+1} - \phi^n = \sum_{k=n-K}^{n+1} \beta_k f(t_k, \phi^k) \Delta t$$

- Coefficients β_k 's can be estimated by Taylor Tables:
 - Fit Taylor series so as to cancel as high-order terms as possible

Example: Taylor Table for the Adams-Moulton 3-steps (4 time-nodes) Method

Denoting $h = \Delta t$, $\phi = u$, $\frac{du}{dt} = u' = f(t, u)$ and $\underline{u'_n} = f(t_n, u^n)$, one obtains for K = 2:

$$u^{n+1} - u^{n} = \sum_{k=-K}^{1} \beta_{k} f(t_{n+k}, u^{n+k}) \Delta t = h \Big[\beta_{1} f(t_{n+1}, u^{n+1}) + \beta_{0} f(t_{n}, u^{n}) + \beta_{-1} f(t_{n-1}, u^{n-1}) + \beta_{-2} f(t_{n-2}, u^{n-2}) \Big]$$

Taylor Table (at t_n):	-1 f	u_n	$h \cdot u_n'$	$h^2 \cdot u_n''$	$h^3 \cdot u_n^{\prime\prime\prime}$	$h^4 \cdot u_n''''$
 The first row (Taylor series) + next 5 rows (Taylor series for each 	u_{n+1} $-u_n$	1 -1	1	$\frac{1}{2}$	$\frac{1}{6}$	$\frac{1}{24}$
term) must sum to zero • This can be satisfied up to the 5 th column (cancels 4 th order term)	$-h\beta_1 u'_{n+1}$ $-h\beta_0 u'_n$		$-eta_1 \ -eta_0$	$-eta_1$	$-eta_1 rac{1}{2}$	$-\beta_1 \frac{1}{6}$
 Hence, the AM method with 4-time levels is 4th order accurate 	$-h\beta_{-1}u'_{n-1}$ $-h\beta_{-2}u'_{n-2}$	- 17 - 17	$-\beta_{-1}$ $-(-2)^0\beta_{-2}$	β_{-1} $-(-2)^1\beta_{-2}$	$-\beta_{-1}\frac{1}{2}$ $-(-2)^2\beta_{-2}\frac{1}{2}$	$\beta_{-1} \frac{1}{6}$ $-(-2)^3 \beta_{-2} \frac{1}{6}$

solving for the β_k 's $\Rightarrow \beta_1 = 9/24$, $\beta_0 = 19/24$, $\beta_{-1} = -5/24$ and $\beta_{-2} = 1/24$

Examples of Adams Methods for Time-Integration

Explicit Methods. (Adams-Bashforth, with ABn meaning n^{th} order AB)

$$u_{n+1} = u_n + hu'_n$$
 Euler
 $u_{n+1} = u_{n-1} + 2hu'_n$ Leapfrog
 $u_{n+1} = u_n + \frac{1}{2}h[3u'_n - u'_{n-1}]$ AB2
 $u_{n+1} = u_n + \frac{h}{12}[23u'_n - 16u'_{n-1} + 5u'_{n-2}]$ AB3

Implicit Methods. (Adams-Moulton, with AMn meaning n^{th} order AM)

$$u_{n+1} = u_n + hu'_{n+1}$$
 Implicit Euler $u_{n+1} = u_n + \frac{1}{2}h[u'_n + u'_{n+1}]$ Trapezoidal (AM2) $u_{n+1} = \frac{1}{3}[4u_n - u_{n-1} + 2hu'_{n+1}]$ 2nd-order Backward $u_{n+1} = u_n + \frac{h}{12}[5u'_{n+1} + 8u'_n - u'_{n-1}]$ AM3

Practical

Multistep Time-Integration Methods for CFD

- High-resolution CFD requires large discrete state vector sizes to store the spatial information
- As a result, up to two times (one on each side of the current time step) have often been utilized (3 time-nodes): $u^{n+1} u^n = h \left[\beta_1 f(t_{n+1}, u^{n+1}) + \beta_0 f(t_n, u^n) + \beta_{-1} f(t_{n-1}, u^{n-1}) \right]$
- Rewriting this equation in a way such that differences w.r.t. Euler's method are easily seen, one obtains ($\theta = 0$ for explicit schemes):

$$(1+\xi) u^{n+1} = \left[(1+2\xi) u^n - \xi u^{n-1} \right] + h \left[\theta f(t_{n+1}, u^{n+1}) + (1-\theta + \varphi) f(t_n, u^n) - \varphi f(t_{n-1}, u^{n-1}) \right]$$

θ	ξ	φ	Method	Order
0	0	0	Euler	1
1	0	0	Implicit Euler	1
1/2	0	0	Trapezoidal or AM2	2
1	1/2	0	2nd-order Backward	2
3/4	0	-1/4	Adams type	2
1/3	-1/2	-1/3	Lees	2
1/2	-1/2	-1/2	Two-step trapezoidal	$\overline{2}$
5/9	-1/6	-2/9	A-contractive	2
0	-1/2	0	Leapfrog	2
0	0	1/2	AB2	$\overline{2}$
0	-5/6	-1/3	Most accurate explicit	3
1/3	-1/6	O	Third-order implicit	3
5/12	0	1/12	AM3	3
1/6	-1/2	-1/6	Milne	4

 Note that higher order R-K methods in time are now also used, especially low storage R-K.

Numerical Fluid Mechanics

© source unknown. All rights reserved. This content is excluded from our CreativeCommons license. For more information, see http://ocw.mit.edu/fairuse.

Implementation of Implicit Time-Marching Methods: Nonlinear Systems and Larger dimensions

Consider the nonlinear system (discrete in space):

$$\frac{d \mathbf{\Phi}}{dt} = \mathbf{B}(\mathbf{\Phi}, t) \; ; \text{ with } \mathbf{\Phi}(t_0) = \mathbf{\Phi}_0$$

- For an explicit method in time, solution is straightforward
 - For explicit Euler: $\mathbf{\Phi}^{n+1} = \mathbf{\Phi}^n + \mathbf{B}(\mathbf{\Phi}^n, t_n) \Delta t$
 - More general, e.g. AB: $\Phi^{n+1} = \mathbf{F}(\Phi^n, \Phi^{n-1}, ..., \Phi^{n-K}, t_n) \Delta t$

- For an implicit method
 - $\mathbf{\Phi}^{n+1} = \mathbf{\Phi}^n + \mathbf{B}(\mathbf{\Phi}^{n+1}, t_{n+1}) \Delta t$ – For Implicit Euler:
 - $\mathbf{\Phi}^{n+1} = \mathbf{F}(\mathbf{\Phi}^{n+1}, \mathbf{\Phi}^n, \mathbf{\Phi}^{n-1}, ..., \mathbf{\Phi}^{n-K}, t_{n+1}) \Delta t$ – More general:

$$\tilde{\mathbf{F}}(\mathbf{\Phi}^{n+1}, \mathbf{\Phi}^n, \mathbf{\Phi}^{n-1}, ..., \mathbf{\Phi}^{n-K}, t_{n+1}) = 0$$
; with $\tilde{\mathbf{F}} = \mathbf{F}\Delta t - \mathbf{\Phi}^{n+1}$

=> a nontrivial scheme is needed to obtain Φ^{n+1}

Implementation of Implicit Time-Marching Methods: Larger dimensions and Nonlinear systems

- Two main options for an implicit method, either:
 - 1. Linearize the RHS at t_n :

• Taylor Series:
$$\mathbf{B}(\mathbf{\Phi},t) = \mathbf{B}(\mathbf{\Phi}^n,t_n) + \mathbf{J}^n \left(\mathbf{\Phi} - \mathbf{\Phi}^n\right) + \frac{\partial \mathbf{B}}{\partial t} \Big|^n (t-t_n) + O(\Delta t^2) \text{ for } t_n \leq t \leq t_{n+1}$$
where
$$\mathbf{J}^n = \frac{\partial \mathbf{B}}{\partial \mathbf{\Phi}} \Big|^n \text{ i.e. } [\mathbf{J}^n]_{ij} = \frac{\partial \mathbf{B}_i}{\partial \mathbf{\Phi}_j} \Big|^n \text{ (Jacobian Matrix)}$$

 Hence, the linearized system (for the frequent case of system not explicitly function of t):

$$\frac{d\mathbf{\Phi}}{dt} = \mathbf{B}(\mathbf{\Phi}) \implies \frac{d\mathbf{\Phi}}{dt} = \mathbf{J}^n \mathbf{\Phi} + \left[\mathbf{B}(\mathbf{\Phi}^n) - \mathbf{J}^n \mathbf{\Phi}^n \right]$$

- 2. Use an iteration scheme at each time step, e.g. fixed point iteration (direct), Newton-Raphson or secant method
 - Newton-Raphson: $x_{r+1} = x_r \frac{1}{f'(x_n)} f(x_r) \Rightarrow \left| \Phi_{r+1}^{n+1} = \Phi_r^{n+1} \left(\frac{\partial \tilde{\mathbf{F}}}{\partial \Phi^{n+1}} \right) \right|^{-1} \tilde{\mathbf{F}}(\Phi_r^{n+1}, t_{n+1})$
 - Iteration often rapidly convergent since initial guess to start iteration at t_n close to unknown solution at t_{n+1}

Deferred-Correction Approaches

- Size of computational molecule affects both storage requirements and effort needed to solve the algebraic system at each time-step
 - Usually, we wish to keep only the nearest neighbors of the center node P in the LHS of equations (leads to tri-diagonal matrix or something close to it) ⇒ easier to solve linear/nonlinear system
 - But, approximations that produce such molecules are often not accurate enough
- Way around this issue?
 - Leave only the terms containing the nearest neighbors in the LHS and bring all other more-remote terms to the RHS
 - This requires that these terms be evaluated with previous or old values, which may lead to divergence of the iterative scheme
- Better approach?

Better Approach

- Compute the terms that are approximated with a high-order approximation explicitly and put them in the RHS
- Take a simpler approximation to these terms (that give a small computational molecule). Insert it twice in the equation, with a + and - sign
- One of these two simpler approximations, keep it in the LHS of the equations (with unknown variables values, i.e. implicit/new). Move the other to the RHS (i.e. computing it explicitly using existing/old values)
- The RHS now contains the difference between two explicit approximations of the same term, and is likely to be small ⇒
 - Likely no convergence problems to an iteration scheme (Jacobi, GS, SOR, etc) or gradient descent (CG, etc)
- Once the iteration converges, the low order approximation terms (one explicit, the other implicit) drop out and the solution corresponds to the higher-order approximation
- ⇒ Using H & L for high & low orders:

$$\mathbf{A}^{H} \mathbf{x} = \mathbf{b} \longrightarrow \mathbf{A}^{L} \mathbf{x} = \mathbf{b} - \left[\mathbf{A}^{H} \mathbf{x} - \mathbf{A}^{L} \mathbf{x} \right]^{\text{old}}$$

- This approach can be very powerful and general
 - Used when treating higher-order approximations, non-orthogonal grids, corrections needed to avoid oscillation effects, etc
 - Since RHS can be viewed as a correction ⇒ called deferredcorrection
 - Note: both L&H terms could be implicit in time: use L&H explicit starter to get first values and then most recent old values in bracket during iterations (similar to Jacobi vs. Gauss Seidel)
 - Explicit for H (high-order) term, implicit for L (low-order) term

$$\mathbf{A}^{H} \mathbf{x} = \mathbf{b} \longrightarrow \mathbf{A}^{L} \mathbf{x}_{implicit} = \mathbf{b} - \left[\mathbf{A}^{H} \mathbf{x}_{explicit} - \mathbf{A}^{L} \mathbf{x}_{implicit} \right]^{old}$$

Implicit for both L and H terms (similar to Gauss-Seidel)

$$\mathbf{A}^{H} \mathbf{x} = \mathbf{b} \longrightarrow \mathbf{A}^{L} \mathbf{x}_{\text{implicit}} = \mathbf{b} - \left[\mathbf{A}^{H} \mathbf{x}_{\text{implicit}} - \mathbf{A}^{L} \mathbf{x}_{\text{implicit}} \right]^{\text{old}}$$

- Example 1: FD methods with High-order Pade' schemes
 - One can use the PDE itself to express implicit Pade' time derivative $\left(\frac{C\varphi}{\partial t}\right)$ as a function of ϕ^{n+1} (see homework)
 - Or, use deferred-correction (within an iteration scheme of index r):

• In time:
$$\left(\frac{\partial \phi}{\partial t}\right)_n^{r+1} = \left(\frac{\phi_{n+1} - \phi_{n-1}}{2\Delta t}\right)^{r+1} + \left[\left(\frac{\partial \phi}{\partial t}\right)_n^{\text{Pade'}} - \frac{\phi_{n+1} - \phi_{n-1}}{2\Delta t}\right]^r$$

• In space:
$$\left(\frac{\partial \phi}{\partial x}\right)_{i}^{r+1} = \left(\frac{\phi_{i+1} - \phi_{i-1}}{2\Delta x}\right)^{r+1} + \left[\left(\frac{\partial \phi}{\partial x}\right)_{i}^{\text{Pade'}} - \frac{\phi_{i+1} - \phi_{i-1}}{2\Delta x}\right]^{r}$$

- The complete 2nd order CDS would be used on the LHS. The RHS would be the bracket term: the difference between the Pade' scheme and the "old" CDS. When the CDS becomes as accurate as Pade', this term in the bracket is zero
- Note: Forward/Backward DS could have been used instead of CDS, e.g. in $\left(\frac{\partial \phi}{\partial t}\right)_{n+1}^{r+1} = \left(\frac{\phi_{n+1} - \phi_n}{\Delta t}\right)^{r+1} + \left[\left(\frac{\partial \phi}{\partial t}\right)_{n+1}^{\text{Pade'}} - \frac{\phi_{n+1} - \phi_n}{\Delta t}\right]^{r+1}$

- Example 2 with FV methods: Higher-order Flux approximations
 - Higher-order flux approximations are computed with "old values" and a lower order approximation is used with "new values" (implicitly) in the linear system solver: $F_e = F_e^L + \left[F_e^H - F_e^L \right]^{\text{old}}$

where F_{ρ} is the flux. For ex., the low order approximation is a UDS or CDS

- Convergence and stability properties are close to those of the low order implicit term since the bracket is often small compared to this implicit term
- In addition, since bracket term is small, the iteration in the algebraic equation solver can converge to the accuracy of higher-order scheme
- Additional numerical effort is explicit with "old values" and thus much smaller than the full implicit treatment of the higher-order terms
- A factor can be used to produce a mixture of pure low and pure high order. This can be used to remove undesired properties, e.g. oscillations of highorder schemes $F_e = \omega F_e^L + (1 - \omega) \left[F_e^H - F_e^L \right]^{\text{old}}$

2.29

References and Reading Assignments Complex Geometries and Grid Generation

- Chapter 8 on "Complex Geometries" of "J. H. Ferziger and M. Peric, Computational Methods for Fluid Dynamics. Springer, NY, 3rd edition, 2002"
- Chapter 9 on "Grid Generation" of T. Cebeci, J. P. Shao, F. Kafyeke and E. Laurendeau, Computational Fluid Dynamics for Engineers. Springer, 2005.
- Chapter 13 on "Grid Generation" of Fletcher, Computational Techniques for Fluid Dynamics. Springer, 2003.
- Ref on Grid Generation only:
 - Thompson, J.F., Warsi Z.U.A. and C.W. Mastin, "Numerical Grid Generation, Foundations and Applications", North Holland, 1985

Grid Generation and Complex Geometries: Introduction

- Many flows in engineering and science involve complex geometries
- This requires some modifications of the algorithms:
 - Ultimately, properties of the numerical solver also depend on the:
 - Choice of the grid
 - Vector/tensor components (e.g. Cartesian or not)
 - Arrangement of the variables on the grid
- Different types of grids:
 - Structured grids: families of grid lines such that members of the same family do not cross each other and cross each member of other families only once
 - Advantages: simpler to program, neighbor connectivity, resultant algebraic system has a regular structure => efficient solvers
 - Disadvantages: can be used only for simple geometries, difficult to control the distribution of grid points on the domain (e.g. concentrate in specific areas)
 - Three types (names derived from the shape of the grid):
 - H-grid: a grid which can map into a rectangle
 - O-grid: one of the coordinate lines wraps around or is "endless". One introduces an artificial cut at which the grid numbering jumps
 - C-grid: points on portions of one grid line coincide (used for body with sharp edges)

Grid Generation and Complex Geometries: Structured Grids

Figure 11.5 (a) Cartesian grid using an approximated profile to represent cylindrical surfaces; (b) predicted flow pattern using a 40×15 Cartesian grid

 Example: create a grid for the flow over a heat exchanger tube bank (only part of it is shown)

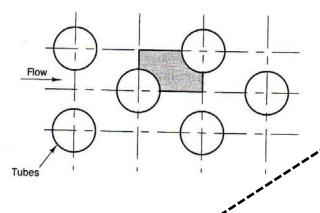
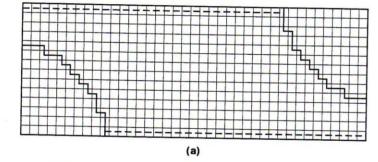


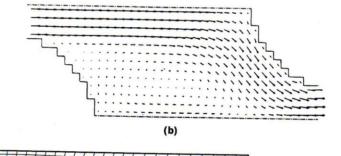
Figure 11.6 (a) Non-orthogonal body-fitted grid for the same problem; (b) predicted flow pattern using a 40 × 15 structured body-fitted grid

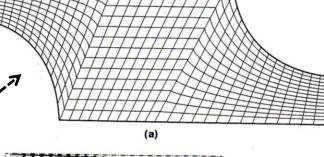
- Number of points non constant or use masks
- Steps at boundary introduce errors
- vs. non-orthogonal, structured grid

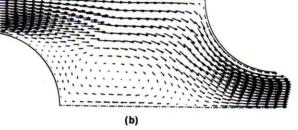
© Prentice Hall. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

H-Type grids









Grid Generation and Complex Geometries: Block-Structured Grids

- Grids for which there is one or more level subdivisions of the solution domain
 - Can match at interfaces or not
 - Can overlap or not
- Block structured grids with overlapping blocks are sometimes called "composite" or "Chimera" grids
 - Interpolation used from one grid to the other
 - Useful for moving bodies (one block attached to it and the other is a stagnant grid)
- Special case: Embedded or Nested grids, which can still use different dynamics at different scales

Grid with 3 Blocks, with an O-Type grid (for coordinates around the cylinder)

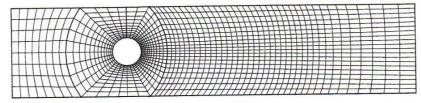


Fig. 2.2. Example of a 2D block-structured grid which matches at interfaces, used to calculate flow around a cylinder in a channel

Grid with 5 blocks, including H-Type and C-Type, and non-matching interface:

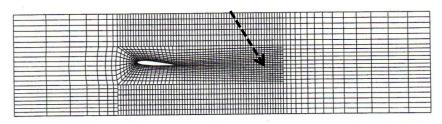


Fig. 2.3. Example of a 2D block-structured grid which does not match at interfaces, designed for calculation of flow around a hydrofoil under a water surface

"composite" or "Chimera" Grid

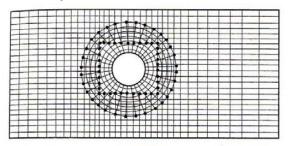


Fig. 2.4. A composite 2D grid, used to calculate flow around a cylinder in a channel

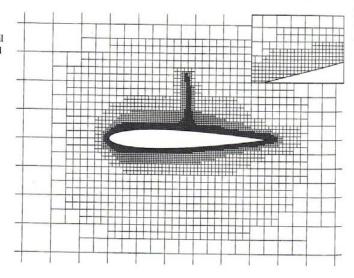
Grids © Springer. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

Grid Generation and Complex Geometries:

Other examples of Block-structured Grids

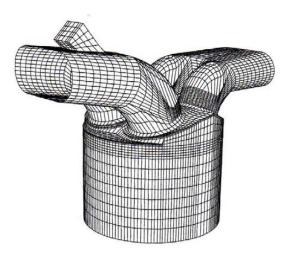
Figure 11.9 Block-structured mesh for a transonic aerofoil. Inset shows cut cells near aerofoil surface. Also note additional grid refinement in the flow region to capture a shock above the aerofoil

Source: Haselbacher (1999)



© Andreas C. Haselbacher. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/. Figure 1.7 in Haselbacher, Andreas C. "A grid-transparent numerical method for compressible viscous flows on mixed unstructured grids." PhD diss., Loughborough University, 1999.

Figure 11.10 Block-structured mesh arrangement for an engine geometry, including inlet and exhaust ports, used in engine simulations with KIVA-3V



© Prentice Hall. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

2.29 Numerical Fluid Mechanics PFJL Lecture 21,

Grid Generation and Complex Geometries: Unstructured Grids

- For very complex geometries, most flexible grid is one that can fit any physical domain: i.e. unstructured
- Can be used with any discretization scheme, but best adapted to FV and FE methods
- Grid most often made of:
 - Triangles or quadrilaterals in 2D
 - Tetrahedra or hexahedra in 3D

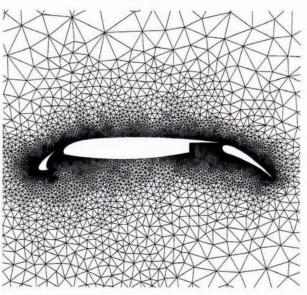
Advantages

- Unstructured grid can be made orthogonal if needed
- Aspect ratio easily controlled
- Grid may be easily refined

Disadvantages:

- Irregularity of the data structure: nodes locations and neighbor connections need to be specified explicitly
- The matrix to be solved is not regular anymore and the size of the band needs to be controlled by node ordering

Figure 11.11 A triangular grid for a three-element aerofoil Source: Haselbacher (1999)

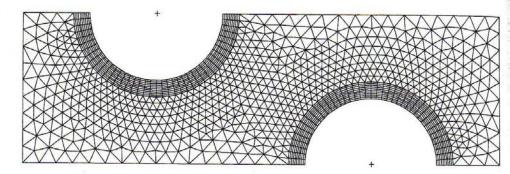


© Andreas C. Haselbacher. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/. Figure 1.7 in Haselbacher, Andreas C. "A grid-transparent numerical method for compressible viscous flows on mixed unstructured grids." PhD diss., Loughborough University, 1999.

Figure 11.12 An example of an unstructured mesh with mixed elements

Unstructured Grids Examples: Multi-element grids

- For FV methods, what matters is the angle between the vector normal to the cell surface and the line connecting the CV centers ⇒
 - 2D equilateral triangles are equivalent to a 2D orthogonal grid
- Cell topology is important:
 - If cell faces parallel, remember that certain terms in Taylor expansion can cancel ⇒ higher accuracy
 - They nearly cancel if topology close to parallel
- Ratio of cells' sizes should be smooth
- Generation of triangles or tetrahedra is easier and can be automated, but lower accuracy
- Hence, more regular grid (prisms, quadrilaterals or hexahedra) often used near boundary where solution often vary rapidly



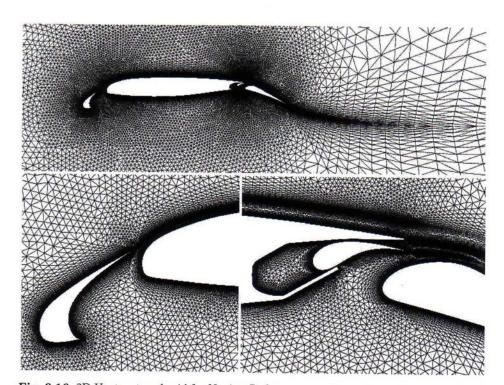


Fig. 9.16. 2D Unstructured grid for Navier–Stokes computations of a multi-element airfoil generated with the hybrid advancing front Delaunay method of Mavriplis [6].

© Springer. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

Complex Geometries: The choice of velocity (vector) components

- Cartesian (used in this course)
 - With FD, one only needs to employ modified equations to take into account of non-orthogonal coordinates (change of derivatives due to change of spatial coordinates from Cartesian to non-orthogonal)
 - In FV methods, normally, no need for coordinate transformations in the PDEs: a local coordinate transformation can be used for the gradients normal to the cell faces

Grid-oriented:

- Non-conservative source terms appear in the equations (they account) for the re-distribution of momentum between the components)
- For example, in polar-cylindrical coordinates, in the momentum equations:
 - Apparent centrifugal force and apparent Coriolis force

Complex Geometries: The choice of variable arrangement

Staggered arrangements

- Improves coupling $u \leftrightarrow p$
- For Cartesian components when grid lines change by 90 degrees, the velocity component stored at the cell face makes no contribution to the mass flux through that face
- Difficult to use Cartesian components in these cases

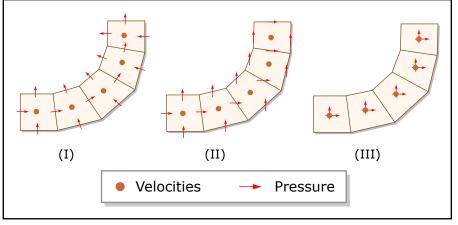


Image by MIT OpenCourseWare.

Variable arrangements on a non-orthogonal grid. Illustrated are a staggered arrangement with (i) contravarient velocity components and (ii) Cartesian velocity components, and (iii) a colocated arrangement with Cartesian velocity components.

- Hence, for non-orthogonal grids, grid-oriented velocity components often used
- Collocated arrangements (mostly used here)
 - The simplest one: all variables share the same CV
 - Requires more interpolation

Classes of Grid Generation

- An arrangement of discrete set of grid points or cells needs to be generated for the numerical solution of PDEs (fluid conservation equations)
 - Finite volume methods:
 - Can be applied to uniform and non-uniform grids
 - Finite difference methods:
 - Require a coordinate transformation to map the irregular grid in the physical spatial domain to a regular one in the computational domain
 - Difficult to do this in complex 3D spatial geometries
 - So far, only used with structured grid (could be used with unstructured grids with polynomials ϕ defining the shape of ϕ around a grid point)
- Three major classes of (structured) grid generation: i) algebraic methods, ii) differential equation methods and iii) conformal mapping methods
- Grid generation and solving PDE can be independent
 - A numerical (flow) solver can in principle be developed independently of the grid
 - A grid generator then gives the metrics (weights) and the one-to-one correspondence between the spatial-grid and computational-grid

Grid Generation:

Basic Concepts for Structured Grids

- Structured Grids (includes curvilinear or non-orthogonal grids)
 - Often utilized with FD schemes
 - Methods based on coordinate transformations
- Consider irregular shaped physical domain (x, y) in Cartesian coordinates and determine its mapping to the computational domain in the (ξ, η)

Cartesian coordinates

- Increase ξ or η monotonically in physical domain along "curved lines"
- Coordinate lines of the same family do not cross
- Lines of different family don't cross more than once
- Physical grid refined where large errors are expected



Image by MIT OpenCourseWare.

A simply-connected irregular shape in the physical plane is mapped as a rectangle in the computational plane.

- Mapped (computational) region has a rectangular shape:
 - Coordinates (ξ, η) can vary from 1 to (I, J), with mesh sizes taken equal to 1
- Boundaries are mapped to boundaries

Grid Generation:

Basic Concepts for Structured Grids, Cont'd

- The example just shown was the mapping of an irregular, simply connected, region into a rectangle.
- Other configurations are of course possible
- For example, a L-shape domain can be mapped into:
 - a regular L-shape

or into a rectangular shape

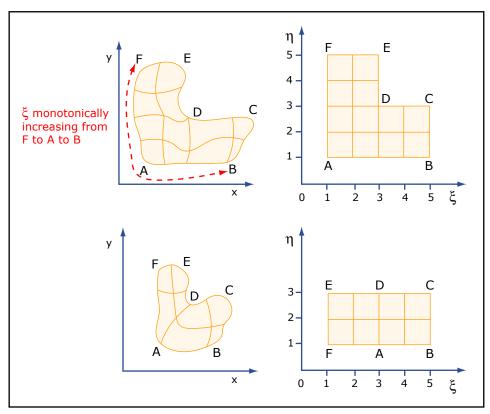


Image by MIT OpenCourseWare.

Grid Generation for Structured Grids:

Stretched Grids

- Consider a viscous flow solution on a given body, where the velocity varies rapidly near the surface of the body (Boundary Layer)
- For efficient computation, a finer grid near the body and coarser grid away from the body is effective (aims to maintain constant accuracy)
- Possible coordinate transformation: a scaling " $\eta = \log(y)$ " \leftrightarrow " $y = \exp(\eta)$ "

$$\begin{cases} \xi = x \\ \eta = 1 - \frac{\ln[A(y)]}{\ln B} \end{cases} \text{ where } A(y) = \frac{\beta + (1 - y/h)}{\beta - (1 - y/h)} \text{ and } B = \frac{\beta + 1}{\beta - 1}$$

The parameter β $(1 < \beta < \infty)$ is the stretching parameter. As β gets close to 1, more grid points are clustered to the wall in the physical domain.

• Inverse transformation is needed to map solutions back from ξ , η domain:

$$x = \xi$$

$$\frac{y}{h} = \frac{(\beta + 1) - (\beta - 1)B^{1-\eta}}{1 + B^{1-\eta}}$$

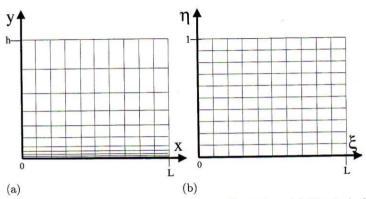


Fig. 9.4. One-dimensional stretching transformation. (a) Physical plane, (b) computational plane.

© Springer. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

Grid Generation for Structured Grids: Stretched Grids, Cont'd

- How do the conservation equations change?
- Consider the continuity equation for steady state flow in physical (x, y) space:

$$\nabla \cdot (\rho \vec{v}) = 0 \quad \Rightarrow \quad \frac{\partial \rho u}{\partial x} + \frac{\partial \rho v}{\partial y} = 0$$

In the computational plane, this equation becomes (chain rule)

$$\frac{\frac{\partial \rho u}{\partial x} = \frac{\partial \rho u}{\partial \xi} \frac{\partial \xi}{\partial x} + \frac{\partial \rho u}{\partial \eta} \frac{\partial \eta}{\partial x}}{\frac{\partial \rho u}{\partial y}} \Rightarrow \frac{\partial \rho u}{\partial \xi} \xi_x + \frac{\partial \rho u}{\partial \eta} \eta_x + \frac{\partial \rho v}{\partial \xi} \xi_y + \frac{\partial \rho v}{\partial \eta} \eta_y = 0}$$

For our stretching transformation, one obtains:

$$\xi_x = 1$$
, $\eta_x = 0$, $\xi_y = 0$, $\eta_y = \frac{2\beta}{h \ln(B)} \frac{1}{\beta^2 - (1 - v/h)^2}$

• Therefore, the continuity equation becomes:

$$\frac{\partial \rho u}{\partial \xi} + \frac{\partial \rho v}{\partial \eta} \eta_{y} = 0$$

 This equation can be solved on a uniform grid (slightly more complicated eqn.) system), and the solution mapped back to the physical domain using the inverse transform

Grid Generation for Structured Grids: Algebraic Methods: Transfinite Interpolation

- Multi-directional interpolation (Transfinite Interpolation)
 - -To generate algebraic grids within more complex domains or around more complex configurations, multi-directional interpolations can be used
 - They consist of a suite of unidirectional interpolations
- Unidirectional Interpolations (1D curve)
 - -The Cartesian coordinate vector of any point on a curve $\mathbf{r}(x,y)$ is obtained as an interpolation between given points that lie on the boundary curves
 - How to interpolate? the regulars:
 - Lagrange Polynomials: match function values

$$\vec{r}(i) = \sum_{k=0}^{n} L_k(i) \vec{r}_k$$
 with $L_k(i) = \prod_{j=0, j \neq k}^{n} \frac{i - i_j}{i_k - i_j}$,

Hermite Polynomials: match both function and 1st derivative values

$$\vec{r}(i) = \sum_{k=1}^{n} a_k(i) \vec{r}_k + \sum_{k=1}^{m} b_k(i) \vec{r}'_k$$

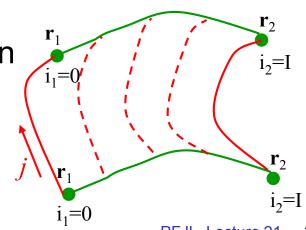
Grid Generation for Structured Grids:

Algebraic Methods: Transfinite Interpolation, Cont'd

- Unidirectional Interpolations (1D curve), Cont'd
 - Lagrange and Hermite Polynomials fit a single polynomial from one boundary to the next => for long boundaries, oscillations may occur
 - Alternative 1: use set of lower order polynomials to form a piece-wise continuous interpolation:
 - Spline interpolation (match as many derivatives as possible at interior point) junctions), Tension-spline (more localized curvature) and B-splines (allows local modification of the interpolation)

- Alternative 2: use interpolation functions that are not polynomials, usually "stretching functions": exp, tanh, sinh, etc

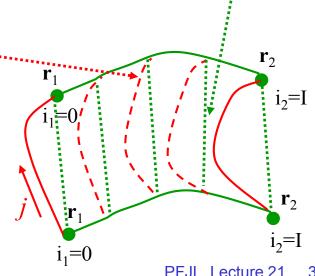
- Multi-directional or Transfinite Interpolation
 - -Extends 1D results to 2D or 3D by successive applications of 1D interpolations
 - For example, i then j.



Grid Generation for Structured Grids:

Algebraic Methods: Transfinite Interpolation, Cont'd

- Multi-directional or Transfinite Interpolation, Cont'd
 - In 2D, the transfinite interpolation can be implemented as follows
 - Interpolate position vectors \mathbf{r} in *i*-direction => leads to points $\mathbf{f}_1 = \mathcal{I}_i(\mathbf{r})$ and *i*-lines
 - Evaluate the difference between this result and r on the j-lines that will be used in the j-interpolation (e.g. 2 differences: one with curve i=0 & one with i=1). $r - f_1$
 - Interpolation of the discrepancy in the j-direction: $\mathbf{f}_2 = \mathcal{I}_i(\mathbf{r} \mathbf{f}_1)$
 - Addition of the results of this j-interpolation to the results of the i-interpolation: $r(i, j) = f_1 + f_2$
- Of course, Lagrange, Hermite Polynomials; Spline and non-polynomial (stretching) functions can be used for transfinite interpolations
- In 2D, inputs to program are 4 boundaries
- Issues: Propagates discontinuities in the interior and grid lines can overlap in some situations
- •=> needs to be refined by grid generator solving a PDE



Grid Generation for Structured Grids: Algebraic Methods: Transfinite Interpolation, Cont'd

Examples:

2.29

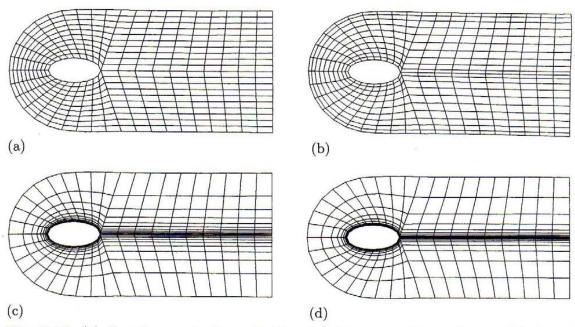


Fig. 9.12. (a) C-grid around ellipse: Unidirectional Lagrange Interpolation, (b) C-grid around ellipse: Unidirectional Hermite Interpolation, (c) C-grid around ellipse: Unidirectional Lagrange Interpolation with Hyperbolic Tangent Spacing, (d) C-grid around ellipse: Unidirectional Hermite Interpolation with Hyperbolic Tangent Spacing.

© Springer. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

MIT OpenCourseWare http://ocw.mit.edu

2.29 Numerical Fluid Mechanics Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.