2.29 Numerical Fluid Mechanics
Spring 2015 — Lecture 21

REVIEW Lecture 20: Time-Marching Methods and ODEs—IVPs

* Time-Marching Methods and ODEs - Initial Value Problems

dd_‘tp —B®+(be) or ‘;_;D =B(®,7) ; with ®(z,) =,

— Euler’s method
— Taylor Series Methods

* Error analysis: for two time-levels, if truncation error is of O(A™), the global error is of O(h™1)
— Simple 2" order methods

* Heun’s Predictor-Corrector and Midpoint Method (belong to Runge-Kutta’s methods)

« To achieve higher accuracy in time: utilize information (known values of the
derivative in time, i.e. the RHS /) at more points in time, equate to Taylor series

— Runge-Kutta Methods -
- Additional points are between . and ., ¢ ¢ = I f(t,¢)dt

— Multistep/Multipoint Methods: Adams Methods
 Additional points are at past time steps

— Practical CFD Methods
— Implicit Nonlinear systems

— Deferred-correction Approach
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TODAY (Lecture 21):
End of Time-Marching Methods, Grid Generation

* Time-Marching Methods and ODEs - IVPs: End
— Multistep/Multipoint Methods
— Implementation of Implicit Time-Marching: Nonlinear systems
— Deferred-correction Approach

 Complex Geometries
— Different types of grids
— Choice of variable arrangements: Cartesian or grid-oriented velocity, staggered or collocated var.

» Grid Generation

— Basic concepts and structured grids
« Stretched grids
» Algebraic methods (for stretched grids)
» General coordinate transformation
 Differential equation methods
« Conformal mapping methods

— Unstructured grid generation
« Delaunay Triangulation

« Advancing Front method
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References and Reading Assignments
Time-Marching

e Chapters 25 and 26 of “Chapra and Canale, Numerical
Methods for Engineers, 2014/2010/2006.”

e Chapter 6 on “Methods for Unsteady Problems” of “J. H.
Ferziger and M. Peric, Computational Methods for Fluid
Dynamics. Springer, NY, 3rd edition, 2002”

e Chapter 6 on “Time-Marching Methods for ODE’s” of “H.
Lomax, T. H. Pulliam, D.W. Zingg, Fundamentals of

Computational Fluid Dynamics (Scientific Computation).
Springer, 2003”
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Multistep/Multipoint Methods

« Additional points are at time steps at which data has already
been computed

« Adams Methods: fitting a (Lagrange) polynomial to the
derivatives at a number of points in time

— Explicit in time (up to ¢,): Adams-Bashforth methods

¢ ¢ = z B (4. ¢") At

— Implicit in time (up to ¢, ,,): Adams-Moulton methods

¢ ¢ = g B f(t,.¢°) At

k=n—-K

— Coefficients f,’s can be estimated by Taylor Tables:

« Fit Taylor series so as to cancel as high-order terms as possible
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Example: Taylor Table for the
Adams-Moulton 3-steps (4 time-nodes) Method

Denoting h=At, ¢=u, %:u':f(t,u) andu' = f(¢,,u") , one obtains for K =2 :

Wt = D B ™) A= AL st B )+ Bof (™) o f (it

Taler Table (at tn): Uy h-ul K2, ! B3 . " Bé . ™

« The first row (Taylor Un 1 1 1 % % 1
series) + next 5 rows 24
(Taylor series for each —Un ~1
term) must sum to zero hu "

 This can be satisfied i1 —b —B —Pig —BlEli
up to the 5™ column il 3
(cancels 4t order term) . 0

* Hence, the AM method -0 u;,_, -84 B o A |
with 4-time levels is 4t . A P15

w2 ! —(_9\0

order accurate hB—auy,_, (—=2)°6_2  —(-2)16_, _(_2)25_2% _(_2)3/3_2%

solving forthe B,'s = f,=9/24, [,=19/24, pB,=-5/24 and p,=1/24
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Examples of Adams Methods for
Time-Integration

Explicit Methods. (Adams-Bashforth, with ABn meaning n™ order AB)

Unpd = Ty 4 AU, Euler
Wnii = Bp_i 2hnl Leapfrog
Tigard = Up 5 %h [3ul, — ul,_,] AB2

Uns1 = Un + 15[23ul, — 16ul_, +5u,_,]  AB3

Implicit Methods. (Adams-Moulton, with AMn meaning n™ order AM)

Untl = Up + AU, 4 Implicit Euler
Upt1 = Up + %h[u;l + uly] Trapezoidal (AM2)
Hprg = % [4un — Up—1 + 2hu§t+l] 2nd-order Backward
Uil == Un 3 % 5uy,y + 8ul, — ul_,] AM3
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Practical
Multistep Time-Integration Methods for CFD

« High-resolution CFD requires large discrete state vector sizes to store the spatial
information

« As aresult, up to two times (one on each side of the current time step) have often
been utilized (3 time-nodes): Wi = B[ B ™)+ B )+ B Sl ]

« Rewriting this equation in a way such that differences w.r.t. Euler's method are
easily seen, one obtains (6 = 0 for explicit schemes):

A+ u =[A+28) u" =& |+h[ 0 f (1,0t +(1=0+9) f(t,.u") = 0] (0" ]

0 £ ® Method Order
= = = e n * Note that higher
10 0 Implicit Euler 1 order R-K methods in
1/2 0 0 Trapezoidal or AM?2 2 time are now also
1 1/2 0 2nd-order Backward 2 d iallv |
3/4 0 —1/4 Adams type 2 used, especially low
1/3 =12 ~1/3 Lees 2 storage R-K.
1/2 -1/2 -1/2 Two-step trapezoidal 2
5/9 —-1/6 -2/9 A-contractive 2
0 -1/2 0 Leapfrog 2
0 0 1/2 AB2 2 Numerical Fluid Mechanics
0 -5/6 -1/3 Most accurate explicit 3 © source unknown. All rights reserved. This content is
1/3 -—1/6 0 Third-order implicit 3 excluded from our CreativeCommons license. For more
5/12 0 1/12 AMS3 ' 3 information, see http://ocw.mit.edu/fairuse.
1/6 —-1/2 - i :
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@‘félmplementation of Implicit Time-Marching Methods:
Nonlinear Systems and Larger dimensions

« Consider the nonlinear system (discrete in space):

9P _ g, ; with d(1,)= D,
d
« For an explicit method in time, solution is straightforward
— For explicit Euler: Q" ="+ B(®",1,) At

— More general, e.g. AB: @' =F@®",®"",.,®" *t) At

* For an implicit method

— For Implicit Euler: " =@+ B(@y,) At
— More general: "' = F(@ @, @, @ 1 ) At or
F(O",@" @', . & )=0; with F=FAt—@""

=> g nontrivial scheme is needed to obtain @
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5\ Implementation of Implicit Time-Marching Methods:
Larger dimensions and Nonlinear systems

« Two main options for an implicit method, either:

1. Linearize the RHS at ¢, :

. Taylor Series:  B(®.0) = B(®",1,) +J" (@-0")+ 22| (1-1)+0(AF) for1, <11,
where J” _oB ; Le. [J7], = oB, (Jacobian Matrix)
oD T o,

* Hence, the linearized system (for the frequent case of system not explicitly
function of 7):

d D d D
—=B(®d) = ——=J"D+|B(®")-J" D"
——=B(®) — | B(®") ]

2. Use an iteration scheme at each time step, e.g. fixed point iteration (direct),
Newton-Raphson or secant method

-1
W !
J F\(I)i 7tn+1)
r

1 n+ n+ aF
3 Newton_Raphson: X, =X, _—f'(x,) f(x,) = (I)r+11 =0, 1 _[aq)nﬂ

* Iteration often rapidly convergent since initial guess to start iteration at ¢, close
to unknown solution at ¢, , ,
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Deferred-Correction Approaches

« Size of computational molecule affects both storage
requirements and effort needed to solve the algebraic system
at each time-step

— Usually, we wish to keep only the nearest neighbors of the center
node P in the LHS of equations (leads to tri-diagonal matrix or
something close to it) = easier to solve linear/nonlinear system

— But, approximations that produce such molecules are often not
accurate enough

« Way around this issue?

— Leave only the terms containing the nearest neighbors in the LHS and
bring all other more-remote terms to the RHS

« This requires that these terms be evaluated with previous or old values,
which may lead to divergence of the iterative scheme

 Better approach?
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.4olf)  Deferred-Correction Approaches, Cont'd
- Better Approach

— Compute the terms that are approximated with a high-order approximation
explicitly and put them in the RHS

— Take a simpler approximation to these terms (that give a small
computational molecule). Insert it twice in the equation, with a + and - sign

— One of these two simpler approximations, keep it in the LHS of the
equations (with unknown variables values, i.e. implicit/new). Move the
other to the RHS (i.e. computing it explicitly using existing/old values)

— The RHS now contains the difference between two explicit approximations
of the same term, and is likely to be small =

* Likely no convergence problems to an iteration scheme (Jacobi, GS, SOR, etc)
or gradient descent (CG, etc)

— Once the iteration converges, the low order approximation terms (one
explicit, the other implicit) drop out and the solution corresponds to the
higher-order approximation

old
+ = Using H & L for high & low orders: [A” x=b —A’x=b—[A” x-A"x]

2.29 Numerical Fluid Mechanics PFJL Lecture 21, 11




Deferred-Correction Approaches, Cont’'d

* This approach can be very powerful and general

— Used when treating higher-order approximations, non-orthogonal
grids, corrections needed to avoid oscillation effects, etc

— Since RHS can be viewed as a correction = called deferred-
correction

— Note: both L&H terms could be implicit in time: use L&H explicit
starter to get first values and then most recent old values in bracket
during iterations (similar to Jacobi vs. Gauss Seidel)

 Explicit for H (high-order) term, implicit for L (low-order) term

H _ L B
A" x=b —HA Ximplicit explicit

_ H I old
=b - [A X A Ximplicit:|

 Implicit for both L and H terms (similar to Gauss-Seidel)

H _ I I old
A"x=b —S>A"X —A Ximplicit:|

=b-| A" x

implicit implicit
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Deferred-Correction Approaches, Cont’'d

« Example 1: FD methods with High-order Pade’ schemes

— One can use the PDE itself to express implicit Pade’ time derivative (%J
as a function of ¢"*! (see homework) E

— Or, use deferred-correction (within an iteration scheme of index r):

¢ In tlme (%jrﬂ — (¢n+l — ¢n—1 jH—l + _(%jf’add _ ¢n+l — ¢n—l
ot ). 2A¢ ot ) 2A¢

*In space: (@j (¢ ¢,1j +(%j e m}
ox ), 2Ax

ox ), 2Ax
* The complete 2" order CDS would be used on the LHS. The RHS would be
the bracket term: the difference between the Pade’ scheme and the “old” CDS.
When the CDS becomes as accurate as Pade’, this term in the bracket is zero

* Note: Forward/Backward DS could have been used instead of CDS, e.g. in

time, (a¢jr+1 (¢n+1 ¢ jr+1 (8¢jPade' B ¢n+1 _¢n r
ot At Ot )1 At
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Deferred-Correction Approaches, Cont’'d

. Ex/ample 2 with FVV methods: Higher-order Flux approximations

— Higher-order flux approximations are computed with “old values” and a
lower order approximation is used with “new values” (implicitly) in the
linear system solver:

F=F'+[F"-F'T"

where F|is the flux. For ex., the low order approximation is a UDS or CDS

« Convergence and stability properties are close to those of the low order implicit
term since the bracket is often small compared to this implicit term

 In addition, since bracket term is small, the iteration in the algebraic equation
solver can converge to the accuracy of higher-order scheme

 Additional numerical effort is explicit with “old values” and thus much smaller
than the full implicit treatment of the higher-order terms

— A factor can be used to produce a mixture of pure low and pure high order.
This can be used to remove undesired properties, e.g. oscillations of high-
order schemes

F=oF' +(1-o)[F'~F'T"
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) References and Reading Assignments
- Complex Geometries and Grid Generation

e Chapter 8 on “Complex Geometries” of “J. H. Ferziger and M.
Peric, Computational Methods for Fluid Dynamics. Springer,
NY, 3rd edition, 2002”

e Chapter 9 on “Grid Generation” of T. Cebeci, J. P. Shao, F.
Kafyeke and E. Laurendeau, Computational Fluid Dynamics for
Engineers. Springer, 2005.

e Chapter 13 on “Grid Generation” of Fletcher, Computational
Techniques for Fluid Dynamics. Springer, 2003.

e Ref on Grid Generation only:

— Thompson, J.F., Warsi Z.U.A. and C.W. Mastin, “Numerical Grid
Generation, Foundations and Applications”, North Holland, 1985
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\ Grid Generation and Complex Geometries:
Introduction

. Many flows in engineering and science involve complex geometries

* This requires some modifications of the algorithms:

— Ultimately, properties of the numerical solver also depend on the:
» Choice of the grid
» Vector/tensor components (e.g. Cartesian or not)
» Arrangement of the variables on the grid

« Different types of grids:

— Structured grids: families of grid lines such that members of the same family do
not cross each other and cross each member of other families only once

— Advantages: simpler to program, neighbor connectivity, resultant algebraic
system has a regular structure => efficient solvers

— Disadvantages: can be used only for simple geometries, difficult to control the
distribution of grid points on the domain (e.g. concentrate in specific areas)
— Three types (names derived from the shape of the grid):
» H-grid: a grid which can map into a rectangle

* O-grid: one of the coordinate lines wraps around or is “endless”. One introduces an
artificial cut at which the grid numbering jumps

» C-grid: points on portions of one grid line coincide (used for body with sharp edges)
2.29 Numerical Fluid Mechanics PFJL Lecture 21, 16
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Grid Generation and
Complex Geometries:
Structured Grids

« Example: create a grid for the flow
over a heat exchanger tube bank
(only part of it is shown)

Figure 11.5 (a) Cartesian grid
using an approximated profile
to represent cylindrical surfaces;
(b) predicted flow pattern using
a 40 x 15 Cartesian grid

S )
] \‘/| @ L

-,
/,’
efle———— R Figure 11.6 (a) Non-orthogonal
’,’ body-fitted grid for the same

: : | RS problem; (b) predicted flow
’ :
e pattern using a 40 x 15

. R structured body-fitted grid

« Stepwise 2D Cartésian grid

— | —

Tubes

— Number of points non constant or
use masks s’

— Steps at boundary introduce errors .-

’

* vs. non-orthogonal, structured grid o

© Prentice Hall. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/fairuse.

H-Type grids
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\ Grid Generation and
_—J Complex Geometries:
- Block-Structured Grids

Grids for which there is one or
more level subdivisions of the
solution domain

— Can match at interfaces or not

— Can overlap or not

Block structured grids with
overlapping blocks are sometimes
called “composite’ or “Chimera’
grids

— Interpolation used from one grid to

the other
— Useful for moving bodies (one

block attached to it and the other is

a stagnant grid)

Special case: Embedded or Nested

grids, which can still use different
dynamics at different scales

Grid with 3 Blocks, with an O-Type grid
(for coordinates around the cylinder)

X A BUBEY AV T
VA T V0 V5 o 7, . FS S SO0 |
. \\\\\\\\\\\\\\\\\v\\ T A L B

FLLEEL Seaem=
[ l‘\Y h - T 1
SEESSIEE :
lllllllll 1 1 I
‘ llllll I 1 I
lllllllllllllllllllllllll -

g A 0 1 ) I
LET T T I E] { Y e e |
A ///II/J;I/ILIIIIIII F 2 I Y (B TSy O |

Fig. 2.2. Example of a 2D block-structured grid which matches at interfaces, used
to calculate flow around a cylinder in a channel

Grid with 5 blocks, including H-Type and C-Type,
and non-matching interface:

Fig. 2.3. Example of a 2D block-structured grid which does not match at interfaces,
designed for calculation of flow around a hydrofoil under a water surface

“composite” or “Chimera” Grid

! , !
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|
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Fig. 2.4. A composite 2D grid, used to calculate flow around a cylinder in a channel

Grids © Springer. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/fairuse.
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Figure 11.9 Block-structured | |
mesh for a transonic aerofoil. | T |
Inset shows cut cells near acrofoil
surface. Also note additional grid ~ — ] {
refinement in the flow region
to capture a shock above the
aerofoil H H !
Source: Haselbacher (1999) ertTIIaIEaLcs

Grid Generation and e
Complex Geometries: e

EEESES,

msu

Other examples of - e '

Block-structured Grids | | —

© Andreas C. Haselbacher. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faqg-fair-use/.
Figure 1.7 in Haselbacher, Andreas C. "A grid-transparent numerical method for
compressible viscous flows on mixed unstructured grids." PhD diss., Loughborough
University, 1999.

Figure 11.10 Block-structured
mesh arrangement for an engine
geometry, including inlet and
exhaust ports, used in engine
simulations with KIVA-3V

© Prentice Hall. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/fairuse.
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Grid Generation and Complex Geometries:
Unstructured Grids

« For very complex geometries, most flexible grid is one Ppws 1011 A tsangilis grid
. . s for a three-element aerofoil
that can fit any physical domain: i.e. unstructured PR (1)

» Can be used with any discretization scheme, but best
adapted to FV and FE methods

e Grid most often made of:

KIS ';A'A!‘!
S
N 3’
‘ Y%

— Triangles or quadrilaterals in 2D

— Tetrahedra or hexahedra in 3D

« Advantages

— Unstructured grid can be made orthogonal if needed IREARA
Aﬁvﬂ'qﬁA

/N
AN
=X

XK
SRR

. . iy AVAVAVA'
— Aspect ratio easily controlled O s Yy

— Grid may be eaSin refined © Andreas C. Haselbacher. All rights reserved. This content
is excluded from our Creative Commons license. For more
PY I \V} nt : information, see http://ocw.mit.edu/help/fag-fair-use/.
D|Sad a ages Figure 1.7 in Haselbacher, Andreas C. "A grid-transparent
numerical method for compressible viscous flows on mixed

— Irregularity of the data structure: nodes locations and {5 ciured orids.” PhD diss.. Loughborough University,
neighbor connections need to be specified explicitly 199

— The matrix to be solved is not regular anymore and the size
of the band needs to be controlled by node ordering
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Figure 11.12 An example of an
AW ) unstructured mesh with mixed
= el /g clements

tructured Grids Examples:

Multi-element grids

* For FV methods, what matters is
the angle between the vector
normal to the cell surface and the
line connecting the CV centers =

— 2D equilateral triangles are
equivalent to a 2D orthogonal grid

* Cell topology is important:

— If cell faces parallel, remember that
certain terms in Taylor expansion
can cancel = higher accuracy

— They nearly cancel if topology close
to parallel

« Ratio of cells’ sizes should be
smooth

» Generation of triangles or
tetrahedra is easier and can be
automated, but lower accuracy

* Hence, more regular grid (prisms,
quadrilaterals or hexahedra) often

v
/] O
AV AV, vva
DO

AVA AV,
AATROOEETK

o
\/) 2
Y

v:(%
aval
oY é"

>
O
e

J
KRR
)

YaY
SOOORKK

0D
AN
\/
AYATaATATA %

Fig. 9.16. 2D Unstructured grid for Navier-Stokes computations of a multi-element airfoil
generated with the hybrid advancing front Delaunay method of Mavriplis [6].

© Springer. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/fairuse.

used near boundary where solution often vary rapidly
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Complex Geometries:
~ The choice of velocity (vector) components

« Cartesian (used in this course)

— With FD, one only needs to employ modified equations to take into
account of non-orthogonal coordinates (change of derivatives due to
change of spatial coordinates from Cartesian to non-orthogonal)

— In FV methods, normally, no need for coordinate transformations in the
PDEs: a local coordinate transformation can be used for the gradients
normal to the cell faces

* (Grid-oriented:

— Non-conservative source terms appear in the equations (they account
for the re-distribution of momentum between the components)

— For example, in polar-cylindrical coordinates, in the momentum
equations:

» Apparent centrifugal force and apparent Coriolis force

2.29 Numerical Fluid Mechanics PFJL Lecture 21, 22



Complex Geometries:
The choice of variable arrangement

« Staggered arrangements -
— Improves coupling u < p -

3] - |
— For Cartesian components L. ‘§ th Bvq

when grid lines change by
90 degrees, the velocity

component stored at the ® Velocites ~ —> Pressure
cell face makes no
contribution to the mass Variable arrangements on a non-orthogonal grid. lllustrated are a staggered

flux through that face arrangement with (i) contravarient velocity components and (ii) Cartesian velocity
components, and (iii) a colocated arrangement with Cartesian velocity

— Difficult to use Cartesian components.
components in these cases

— Hence, for non-orthogonal grids, grid-oriented velocity components often used

(I1) (111)

Image by MIT OpenCourseWare.

Collocated arrangements (mostly used here)
— The simplest one: all variables share the same CV
— Requires more interpolation
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Classes of Grid Generation

+ An arrangement of discrete set of grid points or cells needs to be generated
for the numerical solution of PDEs (fluid conservation equations)
— Finite volume methods:

» Can be applied to uniform and non-uniform grids

— Finite difference methods:

* Require a coordinate transformation to map the irregular grid in the physical spatial
domain to a regular one in the computational domain

« Difficult to do this in complex 3D spatial geometries

» So far, only used with structured grid (could be used with unstructured grids with
polynomials ¢ defining the shape of ¢ around a grid point)

Three major classes of (structured) grid generation: i) algebraic methods, ii)
differential equation methods and iii) conformal mapping methods

Grid generation and solving PDE can be independent
— A numerical (flow) solver can in principle be developed independently of the grid

— A grid generator then gives the metrics (weights) and the one-to-one
correspondence between the spatial-grid and computational-grid
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Grid Generation:
Basic Concepts for Structured Grids

« Structured Grids (includes curvilinear or non-orthogonal grids)
— Often utilized with FD schemes
— Methods based on coordinate transformations
« Consider irregular shaped physical domain (x, y) in Cartesian coordinates

and determine its mapping to the computational domain in the (&, #)
Cartesian coordinates

n
. . y
— Increase £ or  monotonically in o . o) )
physical domain along “curved lines” - . ° c
— Coordinate lines of the same family A A .

do not cross (11 ) 1. 1)

— Lines of different family don’t cross x o 1 2 3 ¢
more than once

. . . Image by MIT OpenCourseWare.
- PhyS|Ca| g”d refined where Iarge A simply-connected irregular shape in the physical plane is mapped

errors are expected as a rectangle in the computational plane.

— Mapped (computational) region has a rectangular shape:
» Coordinates (&, ) can vary from 1 to (I, J), with mesh sizes taken equal to 1

— Boundaries are mapped to boundaries

2.29 Numerical Fluid Mechanics PFJL Lecture 21, 25



Grid Generation:
Basic Concepts for Structured Grids, Cont’d
 The example just shown was the mapping of an irregular,
simply connected, region into a rectangle.
» Other configurations are of course possible

— For example, a L-shape domain \ nt o -
can be mapped into: Y| F—E j
! D C
f”;mono_tonically : D C 37
— aregular L-shape Fronwe | *]
A B 1 A B

yA nﬂ
F E
. 5 C 5] E D C
— or into a rectangular shape N
A B T OF A B
T L

Image by MIT OpenCourseWare.
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Grid Generation for Structured Grids:
Stretched Grids

Consider a viscous flow solution on a given body, where the velocity varies
rapidly near the surface of the body (Boundary Layer)

For efficient computation, a finer grid near the body and coarser grid away
from the body is effective (aims to maintain constant accuracy)

Possible coordinate transformation: a scaling “q =log (v)” < “y = exp(y)”

E=x
In[A4(y)] | where A(y)=

pr=y/h and B—@

o W Lt 8l B—(1-y/h) - p-1
InB
. yh T]Wk
The parameter f (1 <f <) is the =T T
stretching parameter. As f gets closeto 1, | H* , e O
more grid points are clustered to the wall T T _—Fj: - |
in the physical domain. | o + T ‘:l
B e e O G B e s 5 58 1
+ Inverse transformation is needed to C L
map SOIUtionS baCk from 5, ;7 domain: Eig. ]9.411. One-dimensional stretching transformation. (a) Physical plane, (b) computa-
x=¢ ==
Yy _(B+D-(B-1B"" Commons license, For more information, see http://ocw.mit.edu/tairuse, -
h 1+ B""
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Grid Generation for Structured Grids:
Stretched Grids, Cont’'d

* How do the conservation equations change?

 Consider the continuity equation for steady state flow in physical (x, y) space:
opu N opv 0
ox oy B

Viov)=0 =

* In the computational plane, this equation becomes (chain rule)
opu 8,0u 8§ Opu 01
ox 555)6 577536 au opu opv opv

e 25 4 p§+if7y=0
opu 8pv o0& apv 877 85 on o0& on
a 0 8y on oy |
 For our stretching transformation, one obtains:
20 1
:1’ :O, :0’ ju—
o=l =00 =0 = B B Ay

» Therefore, the continuity equation becomes:
opu N opv

of  on

— This equation can be solved on a uniform grid (slightly more complicated eqn.

system), and the solution mapped back to the physical domain using the inverse
PFJL Lecture 21, 28
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Grid Generation for Structured Grids:
Algebraic Methods: Transfinite Interpolation

» Multi-directional interpolation (Transfinite Interpolation)

—To generate algebraic grids within more complex domains or around more
complex configurations, multi-directional interpolations can be used

» They consist of a suite of unidirectional interpolations

 Unidirectional Interpolations (1D curve)

—The Cartesian coordinate vector of any point on a curve r(x,y) is obtained
as an interpolation between given points that lie on the boundary curves

—How to interpolate? the regulars:

» Lagrange Polynomials: match function values /—Nz
r
n l_l R
r(i)= ZL @)r, with L ()= | I L i,=0 1

J=0,j#k lk lj

« Hermite Polynomials: match both function and 15t derivative values

n m
— . _ . - he e | r
F(i) =2 a, ()7, + D b ()T, 1
k=1 k=1 i,=0
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w\: Grid Generation for Structured Grids:
2 Algebraic Methods: Transfinite Interpolation, Cont'd

 Unidirectional Interpolations (1D curve), Cont’'d

—Lagrange and Hermite Polynomials fit a single polynomial from one
boundary to the next => for long boundaries, oscillations may occur

— Alternative 1: use set of lower order polynomials to form a piece-wise
continuous interpolation:

« Spline interpolation (match as many derivatives as possible at interior point
junctions), Tension-spline (more localized curvature) and B-splines (allows local
modification of the interpolation)

— Alternative 2: use interpolation functions that are not polynomials, usually
“stretching functions”: exp, tanh, sinh, etc

» Multi-directional or Transfinite Interpolation -
— Extends 1D results to 2D or 3D by

successive applications of 1D interpolations \
J

—For example, i thenj. =1
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Grid Generation for Structured Grids:
9 Algebraic Methods: Transfinite Interpolation, Cont'd

» Multi-directional or Transfinite Interpolation, Cont’d

—In 2D, the transfinite interpolation can be implemented as follows
* Interpolate position vectors r in i-direction => leads to points f;=Z;(r) and i-lines

 Evaluate the difference between this result and r on the j-lines that will be__.iJsed
in the j-interpolation (e.g. 2 differences: one with curve i=0 & one with i=I); r —f,

* Interpolation of the discrepancy in the j-direction: f, = Z,(r —f,)

« Addition of the results of this j-interpolation to the results of the i-interpo_lr"étion:
r (i )=+ 1, f

non-polynomial (stretching) functions can be used for
transfinite interpolations

*In 2D, inputs to program are 4 boundaries

* Issues: Propagates discontinuities in the interior and
grid lines can overlap in some situations

«=> needs to be refined by grid generator solving a PDE
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 Examples:

Grid Generation for Structured Grids:
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(c) (d)

Fig. 9.12. (a) C-grid around ellipse: Unidirectional Lagrange Interpolation, (b) C-grid
around ellipse: Unidirectional Hermite Interpolation, (c) C-grid around ellipse: Unidirec-
tional Lagrange Interpolation with Hyperbolic Tangent Spacing, (d) C-grid around ellipse:
Unidirectional Hermite Interpolation with Hyperbolic Tangent Spacing.

~ Algebraic Methods: Transfinite Interpolation, Cont'd
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