2.29 Numerical Fluid Mechanics
Spring 2015 — Lecture 22

REVIEW Lecture 21.:

» Time-Marching Methods and ODEs — IVPs: End

— Multistep/Multipoint Methods: Adams Methods
 Additional points are at past time steps

— Practical CFD Methods
— Implicit Nonlinear systems
— Deferred-correction Approach

« Complex Geometries

— Different types of grids

— Choice of variable arrangements:
 Grid Generation

— Basic concepts and structured grids

« Stretched grids
» Algebraic methods (for stretched grids), Transfinite Interpolation
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TODAY (Lecture 22).
Grid Generation and Intro. to Finite Elements

» Grid Generation
— Basic concepts and structured grids, cont’'d
» General coordinate transformation
« Differential equation methods
« Conformal mapping methods
— Unstructured grid generation
« Delaunay Triangulation
« Advancing Front method
* Finite Element Methods
— Introduction
— Method of Weighted Residuals: Galerkin, Subdomain and Collocation
— General Approach to Finite Elements:
» Steps in setting-up and solving the discrete FE system
» Galerkin Examples in 1D and 2D
— Computational Galerkin Methods for PDE: general case
» Variations of MWR: summary

* Finite Elements and their basis functions on local coordinates (1D and 2D)
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) References and Reading Assignments
- Complex Geometries and Grid Generation

e Chapter 8 on “Complex Geometries” of “J. H. Ferziger and M.
Peric, Computational Methods for Fluid Dynamics. Springer,
NY, 3rd edition, 2002”

e Chapter 9 on “Grid Generation” of T. Cebeci, J. P. Shao, F.
Kafyeke and E. Laurendeau, Computational Fluid Dynamics for
Engineers. Springer, 2005.

e Chapter 13 on “Grid Generation” of Fletcher, Computational
Techniques for Fluid Dynamics. Springer, 2003.

e Ref on Grid Generation only:

— Thompson, J.F., Warsi Z.U.A. and C.W. Mastin, “Numerical Grid
Generation, Foundations and Applications”, North Holland, 1985
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Grid Generation for Structured Grids:
General Coordinate transformation

 For structured grids, mapping of coordinates from ox, ox  ox,
Cartesian domain to physical domain is defined by 0L 0, OF
a transformation: x;=x;(¢&) ((&j=1,2,3) J:det(axi]: ox, ox, ox,

: : : ) |96 Os,  Og

+ All transformations are characterized by their : af af af
Jacobian determinant J. 0L 0, 0&

— For Cartesian vector components, one only needs to transform
derivatives. One has:

op _ 09 05 _op p
ox, 0f ox, OF, J

Ox,

, where " represents the cofactor of (element i, j of Jacobian matrix)

J

— In 2D, x=x(&n) and ¢= ¢ (¢,n), this leads to:

5¢:5¢5§+5¢5U:0¢ﬂ“+5¢ﬁu:l Op Oy  0¢ dy
ox O0fox onox oF J on J  J\ocon onos

Recall: the minor element m,; corresponding to a; is the determinant of the submatrix that remains
after the i row and the ;j* column are deleted from A. The cofactor c; of a; is: ¢; = (=1)'"I m;
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Grid Generation for Structured Grids:
General Coordinate transformation, Cont’'d

« How do the conservation equations transform?
The generic conservation equation in Cartesian coordinates:

Db 9. (pgr) =V. (kVP)+s, < M+E[P¢‘G —k%j ~ %
Y

ot o ox,
* becomes:
1% 0 k(0O :
JL¢+_ p¢U]__£_¢Bm]J :JS¢
at aéj J aém © source unknown. All rights reserved.
This contentis excluded from our Creative
Where: Commons license. For more information,

see http://ocw.mit.edu/help/fag-fair-use/,

(U, =v,p"=v,B" +v,p* +v,8 is proportional to the velocity component aligned with &,
< (normal to &, = const.)
 B" = pYp" =Y B + BB+ BB are coefficients, sum of products of cofactors 37

» As a result, each 1st derivative term is replaced by a sum of three terms
which contains derivatives of the coordinates as coefficients

* Unusual features of conservation equations in non-orthogonal grids:

— Mixed derivatives appear in the diffusive terms and metrics coefficients appear

in the continuity eqn. _ _ _
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™\ Structured Grids: Gen. Coord. transformation, Cont'd
J Some Comments

« Coordinate transformation often presented only as a means
of converting a complicated non-orthogonal grid into a
simple, uniform Cartesian grid (the computational domain,
whose grid-spacing is arbitrary)

« However, simplification is only apparent:

— Yes, the computational grid is simpler than the original physical one

— But, the information about the complexity in the computational domain
is now in the metric coefficients of the transformed equations

* i.e. discretization of computational domain is now simple, but the
calculation of the Jacobian and other geometric information is not trivial
(the difficulty is hidden in the metric coefficients)
* As mentioned earlier, FD method can in principle be applied

to unstructured grids: specify a local shape function, differentiate and
write FD equations. Has not yet been done.
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Grid Generation for Structured Grids:
Differential Equation Methods

. Grld transformation relations determined by a finite-difference
solution of PDEs

— For 2D problems, two elliptic (Poisson) PDEs are solved

— Can be done for any coordinate systems, but here we will use Cartesian
coordinates. The 2D transformation is then:

« From the physical domain (x, y) to the computational domain (&, #)

At physical boundaries, one of &, 5 is constant, the other is monotonically varying

« At interior points: 0’ 0%
?JFF

0’

an 5_77_
. o@s,m)

where P(&,n) and O(&,n) are called the “control functions”

» Their selection allows to concentrate the &, i lines in specific regions

P(5,1)

« If they are null, coordinates will tend to be equally spaced away from boundaries

« Boundary conditions: &,  specified on boundaries of physical domain
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Grid Generation for Structured Grids:
Differential Equation Methods, Cont’d

. Computatlons to generate the grid mapping are actually carried
out in the computational domain (¢, ) itself !

— don’t want to solve the elliptic problem in the complex physical domain!

 Using the general rule, the elliptic problem is transformed into:

2 2 2

aZX o 0% 10X 2l pE oo
0¢ ogon ~ 0n oc 07
2 2 2

a22-2p " vy L p P02 |2
I3 0&on * on 85 on

: ox
where a=x,+y; f=xx,+y.y,; y=x:+y:; J=x.y,-xy, (with x"::%’ etc)

— Boundary conditions are now the transformed values of the BCs in (x, y)
domain: they are the values of the positions (x, y) of the grid points on the
physical domain mapped to their locations in the computational domain

— Equations can be solved by FD method to determine values of every grid
point (x, y) in the interior of the physical domain

* Method developed by Thomson et al., 1985 (see ref)
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Grid Generation for Structured Grids:
Differential Equation Methods, Example
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Fig. 9.13. (a) Starting algebraic C-grid around an airfoil section; 70 x 30 grid points;
inner spacing AS; = 0.015¢, outer spacing AS, = 0.3c, (b) Elliptic C-grid obtained after
smoothing the algebraic grid of (a) by the solution of Poisson equations (50 iterations),
(c) Close-up of the C-grid showing the application of orthogonality conditions near the
leading edge region.

© Springer. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/fairuse.
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Grid Generation for Structured Grids:

Conformal Mapping Methods

« Conformal mapping schemes are analytical or partially analytical (as
opposed to differential equation methods)

» Restricted to two dimensional flows (based on complex variables): useful for
airfoils
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Fig. 9.14. Three common grids for airfoils. (a) C-grid, (b) O-grid, and (c) H-grid.

© Springer. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/fairuse.

— C-mesh: high density near leading edge of airfoil and good wake

— O-mesh: high density near leading and trailing edge of airfoil

— H-mesh: two sets of mesh lines similar to a Cartesian mesh, which is easiest to
generate. Its mesh lines are often well aligned with streamlines
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Grid Generation for Structured Grids:

Conformal Mapping Methods: Example

« C-mesh example is generated by a parabolic mapping function

* |tis essentially a set of confocal, orthogonal parabolas wrapping around the
airfoil

* The mapping is defined by: 2x+iy) = (& +in)’

1
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* Inverse transformation: e
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© Springer. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/fairuse.

» Polar coordinates can be used for easier “physical plane” to “computational
plane” transformation.

* In conformal mapping, singular point is point where mapping fails (here, it is
the origin) => move it to half the distance from the nose radius
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» Generating unstructured grid is

complicated but now relatively
automated in “classic” cases

* Involves succession of smoothing
techniques that attempt to align

elements with boundaries of physical 905
domain

* Decompose domain into blocks to de-
couple the problems
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» Need to define point positions and
connections
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Fig. 9.16. 2D Unstructured grid for Navier—Stokes computations of a multi-element airfoil

. Most popu |ar a |gor’|th ms: generated with the hybrid advancing front Delaunay method of Mavriplis [6].
_ : : © Springer. All rights reserved. This content is excluded from our Creative
Delaunay TrlanQUIatlon MethOd Commons license. For more information, see http://ocw.mit.edu/fairuse.

— Advancing Front Method (_ Structured grids: simpler grid and straightforward
treatment of algebraic system, but mesh generation

» Two schools of thought: structured vs. constraints on complex geometries

unstructured, what is best for CFD? < o
— Unstructured grids: generated faster on complex

domains, easier mesh refinements, but data storage
9 and solution of algebraic system more complex
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—Use a simple criterion to connect points to
form conforming, non-intersecting elements

—Maximizes minimum angle in each triangle
—Not unique
—Task of point generation is done
independently of connection generation
* Based on Dirichlet’s domain
decomposition into a set of packed
convex regions:

—For a given set of points P, the space is
subdivided into regions in such a way that
each region is the space closer to P than to
any other point = Dirichlet tessellation

Note: at the end,
points P are at
summits of triangles

Image by MIT OpenCourseWare.
2.29

Grid Generation: Unstructured Grids

This geometrical construction is known as the
Dirichlet (Voronoi) tessellation

The tessellation of a closed domain results in
a set of non-overlapping convex regions called
Voronoi regions/polygons

The sides of the polygon around P is made of
segments bisectors of lines joining P to its
neighbors: if all pair of such P points with a
common segment are joined by straight lines,
the result is a Delaunay Triangulation

Each vortex of a Voronoi diagram is then the
circumcenter of the triangle formed by the
three points of a Delaunay triangle

Criterion: the circumcircle can not contain any
other point than these three points

(a) Satisfies the criterion

(b) oes not

Numerical Fluid Mechanics

Image by MIT OpenCourseWare.
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;  Grid Generation: Unstructured Grids
. Advancing Front Method

— In this method, the tetrahedras are built progressively, inward from the
boundary

— An active front is maintained where new tetrahedra are formed

— For each triangle on the edge of the front, an ideal location for a new
third node is computed

— Requires intersection checks to ensure triangles don'’t overlap

Fig. 9.20. Advancing Front technique for unstructured grid generation.

© Springer. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/fairuse.

* In 3D, the Delaunay Triangulation is preferred (faster)
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2.29

References and Reading Assignments
Finite Element Methods

e Chapters 31 on “Finite Elements” of “Chapra and Canale,
Numerical Methods for Engineers, 2006.”

e Lapidus and Pinder, 1982: Numerical solutions of PDEs in
Science and Engineering.

e Chapter 5 on “Weighted Residuals Methods” of Fletcher,

Computational Techniques for Fluid Dynamics. Springer, 2003.

e Some Refs on Finite Elements only:

— Hesthaven J.S. and T. Warburton. Nodal discontinuous Galerkin
methods, vol. 54 of Texts in Applied Mathematics. Springer, New York,
2008. Algorithms, analysis, and applications

— Mathematical aspects of discontinuous Galerkin methods (Di Pietro
and Ern, 2012)

— Theory and Practice of Finite Elements (Ern and Guermond, 2004)
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FINITE ELEMENT METHODS: Introduction

* Finite Difference Methods: based on a discretization of the differential form
of the conservation equations

— Solution domain divided in a grid of discrete points or nodes

— PDE replaced by finite-divided differences = “point-wise” approximation
— Harder to apply to complex geometries

* Finite Volume Methods: based on a discretization of the integral forms of the
conservation equations:

— Grid generation: divide domain into set of discrete control volumes (CVs)
— Discretize integral equation
— Solve the resultant discrete volume/flux equations

* Finite Element Methods: based on reformulation of PDEs into minimization
problem, pre-assuming piecewise shape of solution over finite elements

— Grid generation: divide the domain into simply shaped regions or “elements”

— Develop approximate solution of the PDE for each of these elements

— Link together or assemble these individual element solutions, ensuring some
continuity at inter-element boundaries => PDE is satisfied in piecewise fashion
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Finite Elements: Introduction, Cont’d

- Originally based on the Direct Stiffness Method (Navier in 1826) and
Rayleigh-Ritz, and further developed in its current form in the 1950’s
(Turner and others)

« Can replace somewhat “ad-hoc” integrations of FV with more rigorous
minimization principles

« Originally more difficulties with convection-dominated (fluid) problems,
applied to solids with diffusion-dominated properties

Comparison of FD and FE grids

Examples of Finite elements

(a) A gasket with irregular geometry and nonhomogeneous composition. (b) Such a sysfem is very
difficult to model with a finite-difference approach. This is due fo the fact that complicated approx-
imations are required at the boundaries of the system and at the boundaries between regions of :
differing composition. (c) A finite-element discretization is much better suited for such systems. Qualdrilatetral <
elemen

Triangular
element

Line element

Node

One-dimensional Nodal line

Two-dimensional

Nodal
plane

\

Hexahedron
element

Three-dimensional

Image by MIT OpenCourseWare.

© McGraw-Hill. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see http://ocw.mit.edu/fairuse.
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Finite Elements: Introduction, Cont’'d

« Classic example: Rayleigh-Ritz / Calculus of variations

O =—f on |0,]]

o’

— Finding the solution of

1 2
1(0
is the same as finding « that minimizes J(u)=f E(G_Zj —u fdx

— R-R approximation:

. Expand unknown « into shape/trial functions | u(x)=) a, ¢(x)
i=1

and find coefficients a, such that J(«) is minimized

Finite Elements:

— As Rayleigh-Ritz but choose trial functions to be piecewise shape
function defined over set of elements, with some continuity across
elements
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Finite Elements: Introduction, Cont’d
Method of Weigthed Residuals

 There are several avenues that lead to the same FE
formulation

— A conceptually simple, yet mathematically rigorous, approach is the
Method of Weighted Residuals (MWR)

— Two special cases of MWR: the Galerkin and Collocation Methods

* Inthe MWR, the desired function u is replaced by a finite
series approximation into shape/basis/interpolation functions:

u(x) = Zai 9,(x)

— ¢ (x) chosen such they satisfy the boundary conditions of the problem

— But, they will not in general satisfy the PDE: L(u)=f
= they lead to a residual: | L(i(x))— f(x)=R(x)#0

— The objective is to select the undetermined coefficients a4, so that this
residual is minimized in some sense
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Finite Elements:
Method of Weigthed Residuals, Cont’'d

— One possible choice is to set the integral of the residual to be zero. This
only leads to one equation for » unknowns

= Introduce the so-called weighting functions w, (x) i=1,2, ..., n, and set the
integral of each of the weighted residuals to zero to yield » independent

equations: L
[[RG) w(x) dxde =0, i=1,2,...n
t 0

— In 3D, this becomes:

”R(x)wl.(x)dxdtzo, i=1,2,...,n
tV

A variety of FE schemes arise from the definition of the
weighting functions and of the choice of the shape functions

— Galerkin: the weighting functions are chosen to be the shape functions
(the two functions are then often called basis functions or test functions)

— Subdomain method: the weighting function is chosen to be unity in the
sub-region over which it is applied

— Collocation Method: the weighting function is chosen to be a Dirac-delta
2.29 Numerical Fluid Mechanics PFJL Lecture 22, 20




Finite Elements:
Method of Weigthed Residuals, Cont'd

« Galerkin:  [[R®#)dxdt=0, i=12..n -
tVv GALERKIN
— Basis functions formally required to
be complete set of functions A
1 Wt 7~ weighting function
— Can be seen as “residual forced to V[ e e
zero by being orthogonal to all basis il BT S
functions” e e

[ ] SUdemain methOd: W[O ) \\We:::tlch::::::n

~ i .
,(./bcms function

”R(x)dxdt_ i=12,...n ! ~
e e+l
(c)
- Non Ove rlappl ng domal ns V Often Figure 2.4. Schematic representation of the one-dimensional weighting functions for
the Galerkin, subdomain and collocation methods. (It is assumed here that the chapeau

function is used as a basis for all methods.)

set to elements

. . h iley & . All righ d. Thi
— Easy integration, but not as accurate 5 excluded from our Creative Commons ficonss. For.

more information, see http://ocw.mit.edu/fairuse.

 Collocation Method: [[r() 6, (x)dxdt=0, i=12,..n

— Mathematically equivalent to say that each residual vanishes at each
collocation points x; = Accuracy strongly depends on locations x; .

— Requires no integration.
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