Complete the Online Evaluation of 2.29
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Email TA to get two bonus points (surveys are anonymous)
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2.29 Numerical Fluid Mechanics
Spring 2015 — Lecture 24

REVIEW Lecture 23:

* Finite Element Methods

i)=Y, 4(0) = L(i()- 1) =Rx)#0

— Introduction
— Method of Weighted Residuals: Galerkin, Subdomain and Collocation
— General Approach to Finite Elements: ) | RO w(x) dxdt =0, i=1.2,..n

« Steps in setting-up and solving the discrete FE system
» Galerkin Examples in 1D and 2D
— Computational Galerkin Methods for PDE: general case
» Variations of MWR: summary
» Finite Elements and their basis functions on local coordinates (1D and 2D)

* |Isoparametric finite elements and basis functions on local coordinates (1D, 2D,
triangular)

— High-Order: Motivation
— Continuous and Discontinuous Galerkin FE methods:
« CGvs.DG
» Hybridizable Discontinuous Galerkin (HDG): Main idea and example

— DG: Worked simple example
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TODAY (Lecture 24).
Finite Volume on Complex Geometries
Turbulent Flows and their Numerical Modeling

 Finite Volume on Complex geometries
— Computation of convective fluxes
— Computation of diffusive fluxes
— Comments on 3D

« Turbulent Flows and their Numerical Modeling

— Properties of Turbulent Flows

 Stirring and Mixing

» Energy Cascade and Scales
— Turbulent Wavenumber Spectrum and Scales
— Numerical Methods for Turbulent Flows: Classification
— Direct Numerical Simulations (DNS) for Turbulent Flows
— Reynolds-averaged Navier-Stokes (RANS)
— Large-Eddy Simulations (LES)
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References and Reading Assignments

e Chapter 8 on “Complex Geometries” of “J. H. Ferziger and M. Peric,
Computational Methods for Fluid Dynamics. Springer, NY, 3rd
edition, 2002”

e Chapter 9 on “Turbulent Flows” of “J. H. Ferziger and M. Peric,
Computational Methods for Fluid Dynamics. Springer, NY, 3rd ed.,
2002”

e Chapter 3 on “Turbulence and its Modelling” of H. Versteeg, W.
Malalasekra, An Introduction to Computational Fluid Dynamics: The
Finite Volume Method. Prentice Hall, Second Edition.

e Chapter 4 of “I. M. Cohen and P. K. Kundu. Fluid Mechanics.
Academic Press, Fourth Edition, 2008”

e Chapter 3 on “Turbulence Models” of T. Cebeci, J. P. Shao, F.
Kafyeke and E. Laurendeau, Computational Fluid Dynamics for
Engineers. Springer, 2005
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Finite Volumes on Complex geometries

* FD method (classic):

— Use structured-grid transformation (either algebraic-transfinite, general,
differential or conformal mapping)

— Solve transformed equations on simple orthogonal computational domain

 FV method:

— Starts from conservation egns. in integral form on CV

d

[ PV + j pp(iYdd = ~[ g,idd + Zjﬂvsqjdlf

Jcs

Advective (convective) fluxes Other transports (diffusion, etc)
Sum of sources and

sinks terms (reactions, etc)
— We have seen principles of FV discretization
« Convective/diffusive fluxes, from 1st - 2"d order to higher order discretizations
» These principles are independent of grid specifics, but,
» Several new features arise with non-orthogonal or arbitrary unstructured grids
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2\ Expressing fluxes at the surface based on cell-averaged (nodal)

\v

) values: Summary of Two Approaches and Boundary Conditions

. éet-up of surface/volume integrals: 2 approaches (do things in opposite order)

1. (i) Evaluate integrals using classic rules (symbolic evaluation); (ii) Then, to obtain
the unknown symbolic values, interpolate based on cell-averaged (nodal) values

WF=[ f,d4 = F=g) _
Le ¢_ } = F,=7(¢"s) Similar for other jntegrals:
(iD) §,=7(8,') = (¢ ') (S, =[5,V . B=1] ppavetc)

2. (i) Select shape of solution within CV (piecewise approximation); (ii) impose
volume constraints to express coefficients in terms of nodal values; and (iii) then
integrate. (this approach was used in the examples).

() ¢, (x)=7, (x)

Gi) [ 4, (x) = 5}3 — ¢al— (x)= %P (x) _ Similar for higher dimensions:
V[ | = =) B(x,3) = T, (x,9); elc
Giii) F, = | f,, d B, (X yp) = s et

 Boundary conditions:

— Directly imposed for convective fluxes (From lecture 16)

— One-sided differences for diffusive fluxes
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(summary from Lecture 15)

\ Approx. of Surface/Volume Integrals: —
Classic symbolic formulas T L
* Surface Integrals F, =jsef¢ dA (R
-2D problems (1 D surface integraIS) Notation used for a Cartesian 2D and 3D grid.

Image by MIT OpenCourseWare.

« Midpoint rule (2" order):  f.= ,‘Sequ dd= 1.8, = [.S.+O(&*) = 1.8,

 Trapezoid rule (2" order): f.= _.Sefgj dA= Se(f"e—;’fse)+0(Ay2)

. 4 A
- Simpson’s rule (4" order): F. =) f,d4~S, (o ge+fse) +O(Ay")
— 3D problems (2D surface integrals)

* Midpoint rule (2@ order):  F,=[ f,dd~S,f, +O0\’,AZ)

» Higher order more complicated to implement in 3D

— 1
* Volume Integrals: $,=|,s, 4. ®=—[ pgav

—2D/3D problems, Midpoint rule (2@ order): s, =jVs¢ AV =5,V ~s,V

— 2D, bi-quadratic (4t order, Cartesian): SPZ%
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FV: Approximation of convective fluxes
| PP (.ii)dS

Advective (convective) fluxes

« For complex geometries, one often uses the midpoint rule for
the approximation of surface and volume integrals

» Consider first the mass flux: ¢=1: /. =pvn

— Again, we consider one face only: east side of a 2D CV (same approach
applies to other faces and to any CV shapes).

~ Mid-point rule for mass flux: s, =[_f,,dS=71.S, = 1.5, +O(A") = (p V.i),5,

kN

— The unit normal vector to face “¢” and its surface S,
are defined as: n s =5"i+8" j=(y, -y )i-(x,—x.)]j

where S, =/(S)* +(S?)’

— Hence, mass flux is:

ik

m,=(pv.n),S,=p, v, S i+S =p, (S u,+S’v,)

Image by MIT OpenCourseWare.
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Mass Flux

FV: Approximation of convective fluxes, Cont'd

* The mass flux for the mid-point rule:

m,=p, (S u,+S.v,)

 What’s the difference between the Cartesian and non-

orthogonal grid cases?

— In non-orthogonal case, normal to surface has components in

all directions

— All velocity components thus contribute to the flux (each

component is multiplied by the projection of S, onto the

corresponding axis)

Image by MIT OpenCourseWare.
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FV: Approximation of convective fluxes, Cont'd

» Mass flux for mid-point rule: |7, =p, (S5 u,+S.v,)

 Convective flux for any transported ¢
— Is usually computed after the mass flux. Using the mid-point rule:

F,=[ pp(ii)dS= .S, =(pgiii),S, = s,

where ¢, = value ¢ at center of cell face

— How to obtain ¢,?, use either:

A linear interpolation between two nodes on either side of face (also 2"
order) = becomes trapezoidal rule

» Fit ¢ to a polynomial in the vicinity of the face (piecewise shape function)

— Considerations for unstructured grid:

« Best compromise among accuracy, generality and simplicity is usually:
Linear interpolation and mid-point rule

 Indeed: facilitates use of local grid refinement, which can be used to achieve
higher accuracy at lower cost than higher-order schemes. However, higher-
order FE or compact FD are now being used/developed
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FV: Approximation of diffusive fluxes
_[CSkV¢.ﬁ ds

~
Diftusive Fluxes

For complex geometries, we can still use the midpoint rule

Mid-point rule gives: F£'=| kVgidS=7.s,=/.S,+O0(A") = (kVi),s,

Here, gradient can be expressed in terms of global Cartesian
coordinates (x, y) or local orthogonal coordinates (, ?)

o6, op. o  of
_ . Vg-= - 99 ¢
In 2D: N WY

— There are many ways to approximate the derivative
normal to the cell face or the gradient vector at the
cell center

— As always, two main approaches:

ik

« Approximate surface integral, then interpolate

—Y

» Specify shape function, constraints, then integrate

Image by MIT OpenCourseWare.
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FV: Approximation of diffusive fluxes, Cont’d

1) If shape function ¢ (x, y) is used, with mid-point rule, this gives:

F'~(kVgn),S, =k,| S of +S” 99| |_ keZSZ" o9
ax e ay e i @x.

lle

— Can be evaluated and relatively easy to implement explicitly

—Implicitly can be harder for high-order shape fct ¢ (x, y) (more cell involved)

2) Another way is to compute derivatives at CV centers first, then
interpolate to cell faces (2 steps as for computing ¢, from ¢,)

i) One can use averages + Gauss Theorem locally

 Derivative at center = average derivative over cell

of zj%dV/dV:%

ox|p, g, 0x Ox

P

» Gauss theorem for d¢ /ox (similar for y derivative):

. I%dV:j¢i.ndSz > 48

ol % ax 4faces c

jA

—y

Image by MIT OpenCourseWare.
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FV: Approximation of diffusive fluxes, Cont’d

- /Hence, the gradient at the CV center with respect to x; is obtained by
summing the products of each ¢ _ with the projection of its cell surface
onto a plane normal to x;, and then dividing the sum by the CV volume

()

ox;|, Ox,

_ Ja%V v~y ¢chf/dV
P cVv i 4 ¢ faces

ox

— For ¢_we can use the approximation for the convective fluxes
— We can then interpolate to obtain the gradient at the centers of cell faces
— For Cartesian grids and linear interpolation, one retrieves centered FD
ii) Cell-center gradients can also be approximated to 2"

order assuming a linear variation of ¢ locally:
¢E _¢P ~ v¢‘p- (rE o rp)

« There are as many such equations as there are neighbors to

the cell centered at P = need for least-square inversions
(only n derivatives in nD)

* Issues with this approximation are oscillatory solutions and
g large computational stencils for implicit schemes = use

jA

-y

fmage by MIT Opencourseliere.— deferred-correction approach
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| FV: Approximation of diffusive fluxes, Cont'd

iii) Deferred-Correction Approach:

— ldea behind deferred-correction is to identify possible options and combine
them to reduce costs and eliminate un-desired behavior. Some options:

— If we work in local coordinates (n, £): F! ~(kV¢.n),S, =k,S, 99

on|,
— If grid was close to orthogonal Cartesian, using CDS: Zf ~ ZZ: ~ ‘fE :f”‘ (D
— If interpolate the gradient at the cell center: Pl 0P L=y 1P (2)
onl, 0| 2| -1, 2|1,

~ A fast oscillatory solution doesn’t contribute to this 3™ higher-
order choice, but gradients at cell faces would then be large
=> oscillations do occur:

q)W (DE
o Oee
O O W o e o 0
ww W P E EE

jA Image by MIT OpenCourseWare.

X ~ The obvious solution: 27 <[y [ -y ]

-y

on
will oscillate = Need to find other options/solution
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) FV: Approximation of diffusive fluxes, Contd

|||) Deferred-Correction Approach, Cont’'d (Muzaferija, 1994):

— If line connecting nodes P and E is nearly orthogonal to cell face,
derivative w.r.t n can be approximated with derivative w.r.t £ (as before):

k.S, o¢ ~kS, o¢ ~kS, L/
on o&|, r, — 1|

— If grid is not orthogonal, the deferred correction term should contain the
difference between the gradients in the » and ¢ directions =

old
+k,S, 99 _9¢
on|, o0&,

: : 0
« where the first term is computed as: £.S, a—? =k,S,

- = approximation close to 2" order F, =

e

'~ ks, 2
o

e
¢E_¢P
rE_rP|

 bracket term is interpolated from cell center éradients
(themselves obtained from Gauss theorem)

og| o9
on

=V i,

:V—¢‘.n and o¢ z%
‘ oc|, 9¢

i ., On

e

—y

X _ — —od
Image by MIT OpenCourseWare. * Hence F;d ~ keSe fE—fP‘ + keSe |:V¢ e] (n - |§)
E P
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( FV: Approximation of diffusive fluxes, Cont’d

i) Deferred-Correction Approach, Cont’'d (Muzaferija, 1994):

— In the formula: _ .
Fi~kS, ¢;E—f1’|+keSe [V¢L] ld(n— i.)
E_'p

« The deferred correction term is (close to) zero when grid (close to) orthogonal,
i.e. nand ¢ directions are the same (close to each other).

* It makes the computation of derivatives simple (amounts to sums of neighbor

values), recall that: old

[V—gb‘ejom interpolated from [V—ﬂ » ]

the latter given by e.g. S¢ = Z P.S" /dV

P 4 ¢ faces

i

* Prevents oscillations since based on sums of ¢_ , with
positive coefficients

» We remained in Cartesian coordinates (no need to
transform coordinates, we just need to know the normals
X & surfaces), which is handy for complex turbulent models

Image by MIT OpenCourseWare.

jA

-y
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Some comments on FV on complex geometries

Block-Interface

— Line P-E does not always pass —
through the cell center AT peTm—
* = need some updates in that case ‘%—” | —
I B

» otherwise, scheme is of lower order
(e.g. approximation is not second non-matching e | 10 Iocks with
order anymore)

N/\\

— Schemes can be extended to 3D //\
grids but some updates can also be A ==
needed e

» For example, cell faces are not Collocated arrangement of velocity components

and pressure on FD and FV grids.

always planar, harder in 3D

— Block-structured grids and nested
grids also need special treatment

* For example, matChing at Cell vol d surf tors f
boundanes (usua”y Interpolatlon and arbitrary control volumes.

averaglng) Image by MIT OpenCourseWare.
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Turbulent Flows and their Numerical Modeling

<
<%

Most real flows are turbulent (at some time and space scales)

Properties of turbulent flows

— Highly unsteady: velocity at a point appears random

— Three-dimensional in space: instantaneous field fluctuates rapidly, in all
three dimensions (even if time-averaged or space-averaged field is 2D)

Some Definitions M _

- Ensemble averages: “average of a .
collection of experiments performed M .
under identical conditions”

« Stationary process: “statistics

independent of time” BAM Y 10 AM
© Academic Pr_ess. All rights r_eserved. This con_tent is e_xcluded
» For a stationary process, time and et . rec: For more Information,
ensemble averages are equal Three turbulent velocity realizations

in an atmospheric BL in the morning
(Kundu and Cohen, 2008)
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Turbulent Flows and their Numerical Modeling

. P;operties of turbulent flows, Cont’d

— Highly nonlinear (e.g. high Re)

— High vorticity: vortex stretching is one of the main mechanisms to maintain
or increase the intensity of turbulence

— High stirring: turbulence increases rate at which conserved quantities are
stirred

« Stirring: advection process by which conserved quantities of different values are
brought in contact (swirl, folding, etc)

« Mixing: irreversible molecular diffusion (dissipative process). Mixing increases if
stirring is large (because stirring leads to large 2" and higher spatial derivatives).

 Turbulent diffusion: averaged effects of stirring modeled as “diffusion”

— Characterized by “Coherent Structures” Yes, nstaniSneous interface
« CS are often spinning, i.e. eddies //
« Turbulence: wide range of eddies’ size, in
general, wide range of scales
Turbulent flow in a BL: Large eddy has the size of the BL thickness

Image by MIT OpenCourseWare.
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Welander’s “scrapbook”

Welander P. Studies on the general development
of motion in a two-dimensional ideal fluid. 7ellus,
7 1471-156, 1955.

* His numerical solution illustrates differential
advection by a simple velocity field.

» A checkerboard pattern is deformed by a
numerical quasigeostrophic barotropic flow
which models atmospheric flow at the
500mb level. The initial streamline pattern
Is shown at the top. Shown below are
deformed check board patterns at 6, 12, 24
and 36 hours, respectively.

* Notice that each square of the
checkerboard maintains constant area as it
deforms (conservation of volume).

© Wiley. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/fairuse.
Source: Fig. 2 from Welander, P. "Studies on the General Development
of Motion in a Two-Dimensional, Ideal Fluid." Tellus 7, no. 2 (1955).
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Energy Cascade and Scales

British meteorologist Richarson’s famous quote:

“Big whorls have little whorls, 1 (Kolmogorov microscale
Which feed on their velocity, N
And little whorls have lesser whorls,

And so on to viscosity”.

Image by MIT OpenCourseWare.

Dimensional Analyses and Scales (Tennekes and Lumley, 1972, 1976)

» Largest eddy scales L, T, U: L/T= Distance/time over which fluctuations are correlated
and U = large eddy velocity (usually all three are close to scales of mean flow)

* Viscous scales: 7, t, u, = viscous length (Kolmogorov scale), time and velocity scales

Hypothesis: rate of turbulent energy production = rate of viscous dissipation

o% _ i ~ 3/4 — Re, = largest eddy Re
¢ Length-scale ratio: | L/n~ORe;")  Re, =UL/v ~largesteddy Re

mean

mean

< Time-scale ratio: T/7~O(Re,)?)

< Velocity-scale ratio: |U/u, ~O(Re}")
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Turbulent Wavenumber Spectrum and Scales

» Turbulent Kinetic Energy Spectrum S(K): «" :j:S(K)dK

* In the inertial sub-range, Kolmogorov argued by
dimensional analysis that R—
L . . inertial subrange T_»

S=S(K,e)=A& K> ("< K<n" |
A=1.5 found to be universal for o b

turbulent flows

* Turbulent energy dissipation
’ 3
Turb. energy n U U
&~ - =U X—=—— 10 102 10- 1
Turb. time scale L L P
K | . I :rl)g:"re SLT?.IZb» A typicz(le \;lm\:icnumber spectrum observcd in the ocean, piotted on a log—-log scale. The
PY Om O g O rOV m I Crosca e : 180t S is arbitrary, and the dots represent hypothetical data.

© Academic Press. All rights reserved. This content is excluded from
our Creative Commons license. For more information, see

— Size of eddies depend on turb. nttp://ocw.mit. edu/fairuse.
dissipation € and viscosity v

3\ 1/4 = L (large eddies scale)
. . . | 24
— Dimensional Analysis: n~| — u=U-=+1u'

£
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Numerical Methods for Turbulent Flows

Primary approach (used to be) is experimental

Numerical Methods classified into methods based on:

1) Correlations: useful mostly for 1D problems, e.g.; / =/ &%)

Nu = p(Re, Pr, Ra)
— Moody chart or friction factor relations for turbulent pipe flows,

Nusselt number for heat transfer as a function of Re and Pr, etc.

2) Integral equations:

— Integrate PDEs (NS eqns.) in one or more spatial coordinates
— Solve using ODE schemes (time-marching)

3) Averaged equations

— Averaged over time or over an (hypothetical) ensemble of realizations

— Often decompositions into mean and fluctuations: u=u+u'; ¢=¢+¢

— Require closure models and lead to a set of PDEs: Reynolds-averaged
Navier-Stokes (RANS) eqns. “One-(spatial) point closure” methods
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Numerical Methods for Turbulent Flows

Ndmerical Methods classification, Cont'd:
4) Large-Eddy Simulations (LES)

— Solves for the largest scales of motions of the flow

— Only approximates or parameterizes the small scale motions
— Compromise between RANS and DNS

5) Direct Numerical Simulations (DNS)

— Solves for all scales of motions of the turbulent flow (full Navier-
Stokes)

* The methods 1) to 5) make less and less approximations, but
computational time increases from 1) to 5).

» Conservation PDEs are solved as for laminar flows: major challenge
Is the much wider range of scales (of motions, heat transfer, etc)
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