

2.29 Numerical Fluid Mechanics Spring 2015 – Lecture 4

Review Lecture 3

- Truncation Errors, Taylor Series and Error Analysis
 - Taylor series: $f(x_{i+1}) = f(x_i) + \Delta x f'(x_i) + \frac{\Delta x^2}{2!} f''(x_i) + \frac{\Delta x^3}{3!} f'''(x_i) + \dots + \frac{\Delta x^n}{n!} f^n(x_i) + R_n$ $R_n = \frac{\Delta x^{n+1}}{n+1!} f^{(n+1)}(\xi)$
 - Use of Taylor series to derive finite difference schemes (first-order Euler scheme with forward, backward and centered differences)
 - General error propagation formulas and error estimation, with examples Consider $y = f(x_1, x_2, x_3, ..., x_n)$. If ε_i 's are magnitudes of errors on x_i 's, what is the error on y?
 - The Differential Formula: $\varepsilon_y \leq \sum_{i=1}^n \left| \frac{\partial f(x_1,...,x_n)}{\partial x_i} \right| \varepsilon_i$
 - $E(\Delta_s y) \simeq \sqrt{\sum_{i=1}^{n} \left(\frac{\partial f}{\partial x}\right)^2} \varepsilon_i^2$ • The Standard Error (statistical formula):
 - Error cancellation (e.g. subtraction of errors of the same sign)
 - Condition number: $K_p = \frac{\overline{x} f'(\overline{x})}{f(\overline{x})}$
 - Well-conditioned problems vs. well-conditioned algorithms
 - Numerical stability

Reference: Chapra and Canale, Chapters 3 and 4

2.29 Numerical Fluid Mechanics Spring 2015 – Lecture 4

Reference: Chapra and Canale, Chapters 5 and 6

REVIEW Lecture 3, Cont'd

- Roots of nonlinear equations f(x) = 0
 - Bracketing Methods:
 - $\left| \mathcal{E}_{a} \right| = \left| \frac{\hat{x}_{r}^{n} \hat{x}_{r}^{n+1}}{\hat{x}_{r}^{n}} \right|^{1} \leq \mathcal{E}_{s}$ • Systematically reduce width of bracket, track error for convergence:
 - Bisection: Successive division of bracket in half
 - determine next interval based on sign of: $f(x_1^{n+1})f(x_{\text{mid-point}}^{n+1})$
 - Number of Iterations: $n = \log_2 \left(\frac{\Delta x^0}{E_{x,x}} \right)$
 - False-Position (Regula Falsi): As Bisection, excepted that next x_r is the "linearized zero", i.e. approximate f(x) with straight line using its values at end points, and find its zero:

$$x_r = x_U - \frac{f(x_U)(x_L - x_U)}{f(x_L) - f(x_U)}$$

- "Open" Methods:
 - g(x) = x + c f(x)Systematic "Trial and Error" schemes, don't require a bracket
 - Computationally efficient, don't always converge
 - $x_{n+1} = g(x_n)$ or Fixed Point Iteration (General Method or Picard Iteration): $x_{n+1} = x_n - h(x_n) f(x_n)$

Numerical Fluid Mechanics: Lecture 4 Outline

- Roots of nonlinear equations
 - Bracketing Methods
 - Example: Heron's formula
 - Bisection
 - False Position
 - "Open" Methods
 - Fixed-point Iteration (General method or Picard Iteration)
 - Examples
 - Convergence Criteria
 - Order of Convergence
 - Newton-Raphson
 - Convergence speed and examples
 - Secant Method
 - Examples
 - Convergence and efficiency
 - Extension of Newton-Raphson to systems of nonlinear equations
 - Roots of Polynomial (all real/complex roots)
 - Open methods (applications of the above for complex numbers)
 - Special Methods (e.g. Muller's and Bairstow's methods)
- Systems of Linear Equations

Reference: Chapra and Canale, Chapters 5 and 6

Convergence Theorem

Hypothesis:

g(x) satisfies the following Lipschitz condition:

There exist a *k* such that if

$$x \in I$$
 then

$$|g(x) - g(x^e)| = |g(x) - x^e| \le k|x - x^e|$$

Then, one obtains the following Convergence Criterion: $x_{n-1} \in I \Rightarrow |x_n - x^e| = |g(x_{n-1}) - x^e| \le k|x_{n-1} - x^e|$

Applying this inequality successively to x_{n-1} , x_{n-2} , etc:

$$|x_n - x^e| \le k^n |x_0 - x^e|$$

Convergence $x_0 \in I, k < 1$

Corollary Convergence Theorem

If the derivative of g(x) exists, then the Mean-value Theorem gives:

$$\{\exists \xi \in [x, x^e] \mid g(x) - g(x^e) = g'(\xi)(x - x^e)\}$$

$$\cdot \begin{cases} x < \xi < x^e \\ x^e < \xi < x \end{cases}$$

Hence, a Sufficient Condition for Convergence

If
$$|g'(x)|_{x \in I} \le k < 1 \Rightarrow |g(x) - x^e| \le k|x - x^e|$$

Example: Cube root

$$x^3 - 2 = 0$$
, $x^e = 2^{1/3}$

Rewrite

$$g(x) = x + C(x^3 - 2)$$

$$g'(x) = 3Cx^2 + 1$$

Convergence, for example in the 0<x<2 interval?

$$|g'(x)| < 1 \Leftrightarrow -2 < 3Cx^2 < 0$$
For $0 < x < 2 \Rightarrow \boxed{-1/6 < C < 0}$

$$C = -\frac{1}{6} \Rightarrow x_{n+1} = g(x_n) = x_n - \frac{1}{6}(x_n^3 - 2)$$

Converges more rapidly for small |g'(x)|

$$g'(1.26) = 3C \cdot 1.26^2 + 1 = 0 \Leftrightarrow C = -0.21$$

Ps: this means starting in smaller interval than 0 < x < 2 (smaller x's)

```
n=10;
q=1.0;
C=-0.21;
     sq(1)=g;
                                 cube.m
     for i=2:n
      sq(i) = sq(i-1) + C*(sq(i-1)^3 -a);
     end
     hold off
     f=plot([0 n], [a^(1./3.) a^(1./3.)], 'b')
     set(f,'LineWidth',2);
     hold on
     f=plot(sq,'r')
     set(f,'LineWidth',2);
     f=plot( (sq-a^{(1./3.)})/(a^{(1./3.)}), 'g')
     set(f,'LineWidth',2);
     legend('Exact','Iteration','Error');
     f=title(['a = ' num2str(a) ', C = ' num2str(C)])
     set(f,'FontSize',16);
     grid on
```


Converging, but how close: What is the error of the estimate?

Consider the

$$|x_{n-1} - x^e| \leq |x_{n-1} - x_n| + |x_n - x^e|$$

$$= |x_{n-1} - x_n| + |g(x_{n-1}) - g(x^e)|$$

$$= |x_{n-1} - x_n| + |g'(\xi)||x_{n-1} - x^e|$$

$$\leq |x_{n-1} - x_n| + k|x_{n-1} - x^e|$$

$$\Rightarrow$$

$$|x_{n-1} - x^e| \leq \frac{1}{1 - k}|x_{n-1} - x_n| \qquad (0 \leq k < 1)$$

Hence, at iteration n:
$$|x_n - x^e| \le k|x_{n-1} - x^e| \le \frac{k}{1-k}|x_{n-1} - x_n|$$

Fixed-Point Iteration Summary

$$x_{n+1} = g(x_n)$$

$$|x_n - x^e| \le \frac{k}{1-k} |x_{n-1} - x_n|$$

$$|g'(x)| \le k < 1 \;, \; x \in I$$

Note: Total compounded error due to round-off is bounded by

$$\varepsilon_{r-o}/(1-k)$$

Order of Convergence for an Iterative Method

- The speed of convergence for an iterative method is often characterized by the so-called Order of Convergence
- Consider a series $x_0, x_1, ...$ and the error $e_n = x_n x^e$. If there exist a number p and a constant $C \neq 0$ such that

$$\lim_{n\to\infty} \frac{\left|e_{n+1}\right|}{\left|e_{n}\right|^{p}} = C$$

then p is defined as the Order of Convergence or the Convergence exponent and C as the asymptotic constant

- − p=1 linear convergence,
- − p=2 quadratic convergence,
- p=3 cubic convergence, etc
- Note: Error estimates can be utilized to accelerate the scheme (Aitken's extrapolation, of order 2p-1, if the fixed-point iteration is of order p)
- Fixed-Point: often linear convergence, $e_{n+1} = g'(\xi) e_n$
- "Order of accuracy" used for truncation err. (leads to convergence if stable)

"Open" Iterative Methods: Newton-Raphson

• So far, the iterative schemes to solve f(x)=0 can all be written as

$$x_{n+1} = g(x_n) = x_n - h(x_n) f(x_n)$$

- Newton-Raphson: one of the most widely used scheme
- Extend the tangent from current guess x_n to find point where *x* axis is crossed:

$$x_{n+1} = x_n - \frac{1}{f'(x_n)} f(x_n)$$

or truncated Taylor-series:

$$f(x_{n+1}) = f(x_n) + f'(x_n)(x_{n+1} - x_n) = 0 \implies$$

Newton-Raphson Method:

Its derivation based on local derivative and "fast" rate of convergence

Non-linear Equation

$$f(x) = 0 \Leftrightarrow x = g(x)$$

Convergence Crit., use Lipschitz condition & $x_n = g(x_{n-1})$

$$|g'(x_n)| < k < 1 \Rightarrow |x_n - x^e| \le k|x_{n-1} - x^e|$$

Fast Convergence

$$|g'(x^e)| = 0$$

$$g(x) = x + h(x)f(x)$$
, $h(x) \neq 0$

$$g'(x^e) = 1 + h(x^e)f'(x^e) + h'(x^e)f(x^e)$$

= $1 + h(x^e)f'(x^e)$

Newton-Raphson Iteration

$$x_{n+1} = g(x_n) = x_n - \frac{f(x_n)}{f'(x_n)}$$

Newton-Raphson Method: Example

$$x_{n+1} = x_n - \frac{1}{f'(x_n)} f(x_n)$$

Example - Square Root

$$x = \sqrt{a} \Leftrightarrow f(x) = x^2 - a = 0$$

Newton-Raphson

$$x_{n+1} = x_n - \frac{x_n^2 - a}{2x_n} = \frac{1}{2} \left(x_n + \frac{a}{x_n} \right)$$

Same as Heron's formula!

```
a=26;
n=10;
g=1;

sq(1)=g;
for i=2:n
    sq(i)= 0.5*(sq(i-1) + a/sq(i-1));
end
    hold off
plot([0 n],[sqrt(a) sqrt(a)],'b')
hold on
plot(sq,'r')
plot(a./sq,'r-.')
plot((sq-sqrt(a))/sqrt(a),'g')
grid on
```


Newton-Raphson Example: Its use for divisions

$$x = \frac{1}{a}$$

$$f(x) = ax - 1 = 0$$

$$f'(x) = a$$

$$\frac{f(x)}{f'(x)} = \frac{ax-1}{a} = x^e(ax-1) \simeq x(ax-1)$$

which is a good approximation if $\frac{|x-x^e|}{|x^e|} \ll 1$

Hence, Newton-Raphson for divisions:

$$x_{n+1} = x_n - x_n(ax_n - 1)$$

```
a=10;
n=10;
                                   div.m
q=0.19;
sq(1)=q;
     for i=2:n
      sg(i) = sg(i-1) - sg(i-1) * (a*sg(i-1) -1) ;
     end
     hold off
     plot([0 n],[1/a 1/a],'b')
     hold on
     plot(sq,'r')
     plot((sq-1/a) *a, 'q')
     arid on
     legend('Exact','Iteration','Rel Error');
     title(['x = 1/' num2str(a)])
```


Newton-Raphson: Order of Convergence

$$\epsilon_n = x_n - x^e$$

$$g(x_n) = g(x^e) + \epsilon_n g'(x^e) + \frac{1}{2} \epsilon_n^2 g''(x^e) \cdots$$

Since $g'(x_e) = 0$, truncating third order terms and higher, leads to a second order expansion:

$$g(x_n) - g(x^e) \simeq \frac{1}{2} \epsilon_n^2 g''(x^e)$$
 $\downarrow \qquad \Rightarrow$

$$\begin{array}{ccc}
 & \downarrow & \Rightarrow \\
 & \epsilon_{n+1} = x_{n+1} - x_e & \simeq & \frac{1}{2} \epsilon_n^2 g''(x^e)
\end{array}$$

Quadratic Convergence

$$\frac{\epsilon_{n+1}}{|x^e|} \simeq \frac{1}{2} |x^e| g''(x^e) \left(\frac{\epsilon_n}{|x^e|}\right)^2 = A(x^e) \left(\frac{\epsilon_n}{|x^e|}\right)^2$$

$$\epsilon_{n+1} \simeq \epsilon_n^m \overleftarrow{A}$$
 Convergence Exponent/Order

Note: at x_o , one can evaluate g" in terms of f and f" using

$$g(x) = x - \frac{f}{f'}$$
, $g'(x) = \frac{f f''}{f'^2}$ and $g''(x) = \frac{f''}{f'} + \frac{f f'''}{f'^2} + f(...)$

Newton-Raphson: Issues

- a) Inflection points in the vicinity of the root, i.e. $f''(x^e) = 0$
- b) Iterations can oscillate around a local minima or maxima
- c) Near-zero slope encountered
- d) Zero slope at the root

Image by MIT OpenCourseWare.

Four cases in which there is poor convergence with the Newton-Raphson method.

Roots of Nonlinear Equations: Secant Method

- 1. In Newton-Raphson we have to evaluate 2 functions: $f(x_n)$, $f'(x_n)$
- 2. $f(x_n)$ and $f'(x_n)$ may not be given in closed, analytical form: e.g. in CFD, even $f(x_n)$ is often a result of a numerical algorithm

Approximate Derivative:

$$f'(x_n) \simeq \frac{f(x_n) - f(x_{n-1})}{x_n - x_{n-1}}$$

Secant Method Iteration:

$$x_{n+1} = x_n - \frac{f(x_n)(x_n - x_{n-1})}{f(x_n) - f(x_{n-1})}$$
$$= \frac{f(x_n)x_{n-1} - f(x_{n-1})x_n}{f(x_n) - f(x_{n-1})}$$

- Only 1 function call per iteration! : $f(x_n)$
- It is the open (iterative) version of False Position

Secant Method: Order of convergence

Absolute Error $\epsilon_n = x_n - x^e$

$$\epsilon_n = x_n - x^e$$

$$\epsilon_{n+1} = x_{n+1} - x^e = \frac{f(x^e + \epsilon_n)(x^e + \epsilon_{n-1}) - f(x^e + \epsilon_{n-1})(x^e + \epsilon_n)}{f(x^e + \epsilon_n) - f(x^e + \epsilon_{n-1})} - x^e$$

Using Taylor Series, up to 2nd order

Absolute Error
$$\epsilon_{n+1} \simeq rac{1}{2} \epsilon_{n-1} \epsilon_n rac{f''(x^e)}{f'(x^e)}$$

Relative Error
$$\frac{\epsilon_{n+1}}{|x^e|} \simeq \frac{\epsilon_{n-1}}{|x_e|} \frac{\epsilon_n}{|x_e|} \frac{f''(x^e)}{2f'(x^e)} x^e$$

Convergence Order/Exponent

By definition:

$$\epsilon_n = A(x^e)\epsilon_{n-1}^m \Rightarrow \epsilon_{n-1} = \left(\frac{1}{A}\epsilon_n\right)^{1/m} = B(x^e)\epsilon_n^{1/m}$$

Then:
$$\epsilon_{n+1} = C(x^e)\epsilon_n\epsilon_{n-1} = D(x^e)\epsilon_n\epsilon_n^{1/m} = D(x^e)\epsilon_n^{1+1/m}$$

$$\implies$$
 $1 + \frac{1}{m} = m \Leftrightarrow m = \frac{1}{2}(1 + \sqrt{5}) \simeq 1.62$

Error improvement for each function call

Secant Method
$$\epsilon_{n+1}^* \simeq \epsilon_n^{1.62}$$

Newton-Raphson
$$\epsilon_{n+1}^* = \epsilon_n^2$$

Roots of Nonlinear Equations Multiple Roots

p-order Root

$$f(x) = (x - x^e)^p f_1(x)$$
, $f_1(x^e) \neq 0$

Newton-Raphson

$$x_{n+1} = g(x_n) = x_n - \frac{(x_n - x^e)^p f_1(x_n)}{p(x_n - x^e)^{p-1} f_1(x_n) + (x_n - x^e)^p f'(x_n)}$$

$$x_{n+1} = x_n - \frac{(x_n - x^e)f_1(x_n)}{pf_1(x_n) + (x_n - x^e)f'(x_n)} \qquad f(x)$$

Convergence

$$|x_{n+1} - x^e| \le k|x_n - x^e| \simeq |g'(x^e)| |x_n - x^e|$$

$$g'(x^e) = 1 - \frac{1}{p}$$

Slower convergence the higher the order of the root

Roots of Nonlinear Equations **Bisection**

Algorithm

Less efficient than Newton-Raphson and Secant methods, but often used to isolate interval with root and obtain approximate value. Then followed by N-R or Secant method for accurate root.

Table removed due to copyright restrictions. Useful reference tables for this material: Tables PT2.3 on p.212 and PT2.4 on p. 214 in Chapra, S., and R. Canale. *Numerical Methods for Engineers*. 6th ed. McGraw-Hill Higher Education, 2009. ISBN: 9780073401065.

Table removed due to copyright restrictions. Useful reference tables for this material: Tables PT2.3 on p.212 and PT2.4 on p. 214 in Chapra, S., and R. Canale. *Numerical Methods for Engineers*. 6th ed. McGraw-Hill Higher Education, 2009. ISBN: 9780073401065.

Systems of Linear Equations

- Motivation and Plans
- Direct Methods for solving Linear Equation Systems
 - Cramer's Rule (and other methods for a small number of equations)
 - Gaussian Elimination
 - Numerical implementation
 - Numerical stability
 - Partial Pivoting
 - Equilibration
 - Full Pivoting
 - Multiple right hand sides, Computation count
 - LU factorization
 - Error Analysis for Linear Systems
 - Condition Number
 - Special Matrices: Tri-diagonal systems

Iterative Methods

- Jacobi's method
- Gauss-Seidel iteration
- Convergence

Motivations and Plans

- Fundamental equations in engineering are conservation laws (mass, momentum, energy, mass ratios/concentrations, etc)
 - Can be written as " System Behavior (state variables) = forcing "
- Result of the discretized (volume or differential form) of the Navier-Stokes equations (or most other differential equations):
 - System of (mostly coupled) algebraic equations which are linear or nonlinear, depending on the nature of the continuous equations
 - Often, resulting matrices are sparse (e.g. banded and/or block matrices)
- Lectures 3 and earlier today:
 - Methods for solving f(x)=0 or f(x)=0
 - Can be used for systems of equations: $\mathbf{f}(\mathbf{x}) = \mathbf{b}$, i.e. $\mathbf{f} = (f_1(\mathbf{x}), f_2(\mathbf{x}), ..., f_n(\mathbf{x})) = \mathbf{b}$
- Here we first deal with solving Linear Algebraic equations:

$$\mathbf{A} \mathbf{x} = \mathbf{b}$$
 or $\mathbf{A} \mathbf{X} = \mathbf{B}$

Motivations and Plans

- Above 75% of engineering/scientific problems involve solving linear systems of equations
 - As soon as methods were used on computers => dramatic advances
- Main Goal: Learn methods to solve systems of linear algebraic equations and apply them to CFD applications

Reading Assignment

- Part III and Chapter 9 of "Chapra and Canale, Numerical Methods for Engineers, 2010."
- For Matrix background, see Chapra and Canale (ed. 7th. pg 233-244)
 and other linear algebra texts (e.g. Trefethen and Bau, 1997)

Other References :

- Any chapter on "Solving linear systems of equations" in CFD references provided.
- For example: chapter 5 of "J. H. Ferziger and M. Peric, Computational Methods for Fluid Dynamics. Springer, NY, 3rd edition, 2002"

Direct Numerical Methods

for Linear Equation Systems

$$\mathbf{A} \mathbf{x} = \mathbf{b}$$
 or $\mathbf{A} \mathbf{X} = \mathbf{B}$

- Main Direct Method is: Gauss Elimination
 Key idea is simply to "combine equations so as to eliminate unknowns"
- First, let's consider systems with a small number of equations
 - Graphical Methods
 - Two equations (2 var.): intersection of 2 lines
 - Three equations (3 var.): intersection of 3 planes
 - Useful to illustrate issues:

no solution or infinite solutions (singular) or ill-conditioned system

Fig 9.2 Chapra and Canale

MIT OpenCourseWare http://ocw.mit.edu

2.29 Numerical Fluid Mechanics Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.