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2.29 Numerical Fluid Mechanics

Spring 2015 – Lecture 4
Review Lecture 3
• Truncation Errors, Taylor Series and Error Analysis 

– Taylor series:

– Use of Taylor series to derive finite difference schemes (first-order Euler scheme 

with forward, backward and centered differences)

– General error propagation formulas and error estimation, with examples

• The Differential Formula:

• The Standard Error (statistical formula):

– Error cancellation (e.g. subtraction of errors of the same sign)

– Condition number:

• Well-conditioned problems vs. well-conditioned algorithms

• Numerical stability

2 3

1

1
( 1)

( ) ( ) '( ) ''( ) '''( ) ... ( )
2! 3! !

( )
1!

n
n

i i i i i i n

n
n

n

x x xf x f x x f x f x f x f x R
n

xR f
n








  
       






1 2 3Consider  ( , , ,..., ). If 's are magnitudes of errors on 's,what is the error on ?n i iy f x x x x x y

1

1

( ,..., )n
n

y i
i i

f x x
x

 








2
2

1

( )
n

s i
i i

fE y
x




 
  

 


1

n

s is is is is i
f f   f ff f

  s i s i
f

 
f 

 
 f f
 

f f  
 
  f ff f
 

f ff f
s i s i


s i s i

 x x 
 
 s i s i
 

s i s i
 
 
 
 s i s i
 

s i s i
 xx xx 


 
 
 


 s i s i


s i s i
 

s i s i


s i s is is i

'( )
( )p

x f xK
f x



Reference: Chapra and Canale,
Chapters 3 and 4
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REVIEW Lecture 3, Cont’d
• Roots of nonlinear equations

– Bracketing Methods:

• Systematically reduce width of bracket, track error for convergence:

• Bisection: Successive division of bracket in half

– determine next interval based on sign of: 

– Number of Iterations:

• False-Position (Regula Falsi): As Bisection, excepted that next xr is the “linearized zero”, 
i.e. approximate f(x) with straight line using its values at end points, and find its zero:

– “Open” Methods: 

• Systematic “Trial and Error” schemes, don’t require a bracket

• Computationally efficient, don’t always converge

• Fixed Point Iteration (General Method or Picard Iteration):
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Reference: Chapra
and Canale, 
Chapters 5 and 6 
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Numerical Fluid Mechanics: Lecture 4 Outline

• Roots of nonlinear equations

– Bracketing Methods

• Example: Heron’s formula

• Bisection

• False Position

– “Open” Methods

• Fixed-point Iteration (General method or Picard Iteration)

– Examples

– Convergence Criteria

– Order of Convergence

• Newton-Raphson

– Convergence speed and examples

• Secant Method

– Examples

– Convergence and efficiency

• Extension of Newton-Raphson to systems of nonlinear equations

– Roots of Polynomial (all real/complex roots)

• Open methods (applications of the above for complex numbers)

• Special Methods (e.g. Muller’s and Bairstow’s methods)

• Systems of Linear Equations

Reference: Chapra and Canale, 
Chapters 5 and 6
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Open Methods (Fixed Point Iteration)

Convergence Theorem

x

y

There exist a k such that if

then

Applying this inequality successively to xn-1, xn-2, etc:

Convergence

Then, one obtains the following Convergence Criterion:

Hypothesis:
g(x) satisifies the following Lipschitz condition: 

y=g(x)

y=x
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Open Methods (Fixed Point Iteration)

x

y
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If the derivative of g(x) exists, then
the Mean-value Theorem gives:

Convergent

Divergent

>

x

x x

x01

10

y=x

y=x

y=g(x)

y=g(x)

Hence, a Sufficient Condition for Convergence

Corollary Convergence Theorem

If
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Open Methods (Fixed Point Iteration)

Example: Cube root

Rewrite

Convergence, for example in the 0<x<2 interval?

Converges more rapidly for small 

n=10;

g=1.0;

C=-0.21;

sq(1)=g;

for i=2:n

sq(i)= sq(i-1) + C*(sq(i-1)^3 -a);

end

hold off

f=plot([0 n],[a^(1./3.) a^(1./3.)],'b')

set(f,'LineWidth',2);

hold on

f=plot(sq,'r')

set(f,'LineWidth',2);

f=plot( (sq-a^(1./3.))/(a^(1./3.)),'g')

set(f,'LineWidth',2);

legend('Exact','Iteration','Error');

f=title(['a = ' num2str(a) ', C = ' num2str(C)])

set(f,'FontSize',16);

grid on

cube.m

For 0 2x  

Ps: this means starting in smaller 
interval than 0<x<2  (smaller x’s)
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Open Methods (Fixed Point Iteration)

Converging, but how close: What is the error of the estimate?

Convergence condition:

Consider the 
Absolute error:

Hence, at iteration n: 

Fixed-Point Iteration Summary

Absolute error:

≤

Note: Total compounded 
error due to round-off is 
bounded by

(0 1)k 

/ (1 )r o k  
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Order of Convergence for an Iterative Method

• The speed of convergence for an iterative method is often characterized by 

the so-called Order of Convergence

• Consider a series x0, x1, … and the error en=xn – xe. If there exist a number p
and a constant C≠0 such that

then p is defined as the Order of Convergence or the Convergence 
exponent and C as the asymptotic constant
– p=1 linear convergence, 
– p=2 quadratic convergence, 
– p=3 cubic convergence, etc

• Note: Error estimates can be utilized to accelerate the scheme (Aitken’s
extrapolation, of order 2p-1, if the fixed-point iteration is of order p) 

• Fixed-Point: often linear convergence, 
• “Order of accuracy” used for truncation err. (leads to convergence if stable)
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“Open” Iterative Methods: Newton-Raphson

• So far, the iterative schemes to solve f(x)=0 can all be written as

1 ( ) ( ) ( )n n n n nx g x x h x f x   

x

f(x)

slope:   '( )nf x

• Newton-Raphson: one of the 
most widely used scheme

• Extend the tangent from 
current guess xn to find point 
where x axis is crossed: 

1
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x x f x
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or truncated Taylor-series:



Numerical Fluid Mechanics2.29 PFJL  Lecture 4,    10

Newton-Raphson Method: 
Its derivation based on local derivative and “fast” rate of convergence

Newton-Raphson Iteration

Fast Convergence

Convergence Crit., use Lipschitz condition & xn=g(xn-1)

Non-linear Equation

x

f(x)

slope:   '( )nf x
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Newton-Raphson Method: Example

Example – Square Root

Newton-Raphson

Same as Heron’s formula !

a=26;

n=10;

g=1;

sq(1)=g;

for i=2:n

sq(i)= 0.5*(sq(i-1) + a/sq(i-1));

end

hold off

plot([0 n],[sqrt(a) sqrt(a)],'b')

hold on

plot(sq,'r')

plot(a./sq,'r-.')

plot((sq-sqrt(a))/sqrt(a),'g')

grid on

sqr.m
1
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Newton-Raphson Example: Its use for divisions

a=10;

n=10;

g=0.19;

sq(1)=g;

for i=2:n

sq(i)=sq(i-1) - sq(i-1)*(a*sq(i-1) -1) ;

end

hold off

plot([0 n],[1/a 1/a],'b')

hold on

plot(sq,'r')

plot((sq-1/a)*a,'g')

grid on

legend('Exact','Iteration',‘Rel Error');

title(['x = 1/' num2str(a)])

div.m

Hence, Newton-Raphson for divisions:

which is a good approximation if
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Newton-Raphson: Order of Convergence

Taylor Expansion:

Since g’(xe) = 0, truncating third 
order terms and higher, leads 
to a second order expansion:

Relative Error:

Quadratic Convergence

Convergence Exponent/Order

Define:

2 2

'' '' '''( ) , '( )   and    ''( ) (...)
' ' ' '

f f f f f fg x x g x g x f
f f f f
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Note: at xe , one can evaluate 
g’’ in terms of f ’ and f ’’  using
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Newton-Raphson: 

Issues
a) Inflection points in the vicinity of the 

root, i.e. 

b) Iterations can oscillate around a local 
minima or maxima

c) Near-zero slope encountered

d) Zero slope at the root

''( ) 0ef x 

Four cases in which there is poor convergence with the Newton-Raphson method. 
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Image by MIT OpenCourseWare.
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Roots of Nonlinear Equations:

Secant Method
1. In Newton-Raphson we have to evaluate 2 functions:

2. may not be given in closed, analytical form: e.g. in CFD, even        
is often a result of a numerical algorithm

Approximate Derivative:

Secant Method Iteration:

- Only 1 function call per iteration! :

- It is the open (iterative) version of False Position 

x

f(x)

( ), '( )n nf x f x

( )nf x

( )nf x
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Secant Method: Order of convergence

Absolute Error

Convergence Order/Exponent

1+1/m

Error improvement for each function call

Newton-Raphson

Secant Method

Using Taylor Series, up to 2nd order

Relative Error

Absolute Error

2 

By definition:

Then:


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Roots of Nonlinear Equations

Multiple Roots

x

f(x)

Newton-Raphson

=>

Slower convergence the higher the order of the root

p-order Root

Convergence
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Roots of Nonlinear Equations

Bisection

x

f(x)

Algorithm

n = n+1

yes

no Less efficient than Newton-Raphson and 
Secant methods, but often used to isolate 
interval with root and obtain approximate 
value. Then followed by N-R or Secant 
method for accurate root.   
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Table removed due to copyright restrictions. Useful reference tables for this material: Tables PT2.3 on p.212 and PT2.4 on p. 214 in
Chapra, S., and R. Canale. Numerical Methods for Engineers. 6th ed. McGraw-Hill Higher Education, 2009. ISBN: 9780073401065.
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Chapra and Canale, ed. 7th, 
pg 226

Table removed due to copyright restrictions. Useful reference tables for this material: Tables PT2.3 on p.212 and PT2.4 on p. 214 in
Chapra, S., and R. Canale. Numerical Methods for Engineers. 6th ed. McGraw-Hill Higher Education, 2009. ISBN: 9780073401065.
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Systems of Linear Equations

• Motivation and Plans

• Direct Methods for solving Linear Equation Systems

– Cramer’s Rule (and other methods for a small number of equations)

– Gaussian Elimination

– Numerical implementation

• Numerical stability

– Partial Pivoting

– Equilibration

– Full Pivoting

• Multiple right hand sides, Computation count

• LU factorization

• Error Analysis for Linear Systems

– Condition Number

• Special Matrices: Tri-diagonal systems

• Iterative Methods 

– Jacobi’s method

– Gauss-Seidel iteration

– Convergence
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Motivations and Plans

• Fundamental equations in engineering are conservation laws 

(mass, momentum, energy, mass ratios/concentrations, etc)

– Can be written as “ System Behavior (state variables) = forcing ”

• Result of the discretized (volume or differential form) of the 

Navier-Stokes equations (or most other differential equations):

– System of (mostly coupled) algebraic equations which are linear or 

nonlinear, depending on the nature of the continuous equations

– Often, resulting matrices are sparse (e.g. banded and/or block matrices)

• Lectures 3 and earlier today: 

– Methods for solving    f(x)=0    or   f(x)=0 

– Can be used for systems of equations: f(x)=b, i.e:

• Here we first deal with solving Linear Algebraic equations:

 1 2( ), ( ),..., ( )nf f f f x x x b

     or      Ax b AX B
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Motivations and Plans

• Above 75% of engineering/scientific problems involve 
solving linear systems of equations
– As soon as methods were used on computers => dramatic advances

• Main Goal: Learn methods to solve systems of linear algebraic 
equations and apply them to CFD applications

• Reading Assignment
– Part III and Chapter 9 of “Chapra and Canale, Numerical Methods for 

Engineers, 2010.”

– For Matrix background, see Chapra and Canale (ed. 7th. pg 233-244) 
and other linear algebra texts (e.g. Trefethen and Bau, 1997)

• Other References : 
– Any chapter on “Solving linear systems of equations” in CFD 

references provided. 

– For example: chapter 5 of “J. H. Ferziger and M. Peric, Computational 
Methods for Fluid Dynamics. Springer, NY, 3rd edition, 2002”
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Direct Numerical Methods
for Linear Equation Systems

• Main Direct Method is: Gauss Elimination

Key idea is simply to “combine equations so as to eliminate unknowns”

• First, let’s consider systems with a small number of equations

– Graphical Methods

• Two equations (2 var.): intersection of 2 lines

• Three equations (3 var.): intersection of 3 planes

• Useful to illustrate issues: 

no solution      or  infinite solutions (singular)    or  ill-conditioned system

     or      Ax b AX B

Fig 9.2
Chapra and
Canale
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