2.29 Numerical Fluid Mechanics

Spring 2015 — Lecture 7
REVIEW Lecture 6:

* Direct Methods for solving linear algebraic equations
— LU decomposition/factorization

« Separates time-consuming elimination for A from that forb /B

—

_ Lj = b
A=L-U — _
Uz = Y min(z,j) ")
« Derivation, assuming no pivoting needed:  @ij = > mikAy;

k=1
* Number of Ops: Same as for Gauss Elimination

» Pivoting: Use pivot element “pointer vector”
» Variations: Doolittle and Crout decompositions, Matrix Inverse
— Error Analysis for Linear Systems
* Matrix norms
« Condition Number for Perturbed RHS and LHS: K f = HA_IH HAH

— Special Matrices: Intro
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' %S)TODAY (Lecture 7): Systems of Linear Equations |l

"« Direct Methods
— Gauss Elimination
— LU decomposition/factorization
— Error Analysis for Linear Systems

— Special Matrices: LU Decompositions
« Tri-diagonal systems: Thomas Algorithm

« General Banded Matrices
— Algorithm, Pivoting and Modes of storage
— Sparse and Banded Matrices

« Symmetric, positive-definite Matrices
— Definitions and Properties, Choleski Decomposition

* |terative Methods
— Jacobi’'s method
— Gauss-Seidel iteration
— Convergence
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Reading Assignment

« Chapters 11 of “Chapra and Canale, Numerical Methods for
Engineers, 2006/2010/2014.”

— Any chapter on “Solving linear systems of equations” in references on
CFD references provided. For example: chapter 5 of “J. H. Ferziger
and M. Peric, Computational Methods for Fluid Dynamics. Springer,
NY, 3" edition, 2002”
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Special Matrices

 Certain Matrices have particular structures that can be exploited, i.e.

— Reduce number of ops and memory needs

 Banded Matrices:

— Square banded matrix that has all elements equal to zero, excepted for a band
around the main diagonal.

— Frequent in engineering and differential equations:
 Tri-diagonal Matrices

» Wider bands for higher-order schemes

— Gauss Elimination or LU decomposition inefficient because, if pivoting is not
necessary, all elements outside of the band remain zero (but direct GE/LU
would manipulate these zero elements anyway)

« Symmetric Matrices

* |lterative Methods:
— Employ initial guesses, than iterate to refine solution
— Can be subject to round-off errors
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Special Matrices:
Tri-diagonal Systems Example

Forced Vibration of a String Example of a travelling pluse:

A

i) v

Consider the case of a Harmonic excitation
J(x.t) =- f(x) cos(wi)

Applying Newton’s law leads to the wave equation: {Yﬂ — Y. = f(x,0)

With separation of variables, one obtains the Y (x,1) = 7(£) (x)
equation for modal amplitudes, see eq. (1) below: S Y

2
Differential Equation for the amplitude: % +k*y = f(z) (1)
i

Boundary Conditions:  y(0) =0, y(L) =0
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Special Matrices: Tri-diagonal Systems

Forced Vibration of a String
Finite Difference

fs0)| . 2

I I I I 1 1 1 1 1 _y —~ Yi—1 — 2Yi + Yi+1 2

A T T T T -;: T lI T T ‘ dg}g N — hQ + O(h )
: Yoy Discrete Difference Equations

. . . 2 _ 2
Harmonic excitation vie1 + ((kh)? = 2) y; + yir1 = f(z:)h

fx,1) = f(x) cos(wr) Matrix Form: 2
(kh2-2 1 - . .. 0 fe)

Differential Equation: ] (kh)2—2 1

d*y - : : _

E+k2y:f($) (1) _ 1 (kR -2 1 y=9 flz)h* ¢
Boundary Conditions:

= = 0 -1 (kh)? -2
y(0)=0, y(L)=0 | RSTI

Tridiagonal Matrix

It kh<1 or kh> \/gsymmetric, negative or positive definite: No pivoting needed
4

Note: for 0< kh <1 Negative definite => Write: A'=-A and y'=—y"' to render matrix positive definite
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General Tri-diagonal Systems:

LU Decomposition

>
-
2

Three steps for LU scheme:
1. Decomposition (GE): ay ™ =
Ly =

3. Backward substitution Ux =

2. Forward substitution

2.29
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Special Matrices: Tri-diagonal Systems
Thomas Algorithm

By identification with the general LU decomposition, ali ™" = a\¥ — myay, mg = aly) /ayy

i ; one obtains,
1 I
By 1 , 1. Factorization/Decomposition (1 = ay
L= _ b _ _
B 1 Bk—ak , ap=ap— Brcr-1, k=2,3,...n
i : -1
2. Forward Substitution
0 - - - - B, 1 vi=h, yi=fi—Biyi-1,1=2,3,...n
3. Back Substitution
_ ; :z:,:& m_:y».':—c«;:ﬂ?;-:ﬂ i—n—1 . 1
ar - ' - 0 " G ’ ' g ’ }
a9 C9
T _ Number of Operations: Thomas Algorithm
o : LU Factorization: 3*(n-1) operations
Forward substitution: 2*(n-1) operations
Back substitution: 3*(n-1)+1 operations
o - - . . a,, Total: 8*(n-1) ~ O(n) operations
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Special Matrices:
General, Banded Matrix

p
A General Banded Matrix (p # q)
17>1+p )
> jj — 0
1>74¢q )

Banded Symmetric Matrix (p = q = b)

ajj = aji, [i—j]<b

ajj = aj; =0, [i—j[>b

w=2b + [ is called the bandwidth
p super-diagonals b is the half-bandwidth
g sub-diagonals
w =p + g + I bandwidth
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Special Matrices:

General, Banded Matrix

LU Decomposition via Gaussian Elimination
If No Pivoting: the zeros are preserved

p
/—H

=
cl

(1)

_ ,0) _ -1
a Uy =dy =dy — =M ,4d,
my.=%:0 if j>i or i>j+gq u, =0 if i>j or j>i+p
ajj (as gen. case) (banded) (as gen. case) (banded)

2.29 Numerical Fluid Mechanics PFJL Lecture7, 10



Special Matrices:
General, Banded Matrix

LU Decomposition via Gaussian Elimination
With Partial Pivoting (by rows):

Consider pivoting the 2 rows as below:

p
(_H
Then, the bandwidth of L remains unchanged,
q
m,=0 if j>i or i>j+gq
) , but the bandwidth of U becomes as that of A
q
- - u,=0 it i>j or J>i+p+q_
0 w
w=p + 2 g +1 bandwidth
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Special Matrices:
General, Banded Matrix

Compact Storage

| Needed for
D | (length
iagonal (length n) Pivoting only
p { l : q
e —A — —

J J=i—itq
Matrix size: n’ Matrix size: n (p+2¢g+1)
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Special Matrices:

Sparse and Banded Matrix
‘Skyline’ Systems

(typically for symmetric matrices)

Y

‘Skyline’ .IJ.I_I

!

Storage NN "BEaW -

O

Pointers |1 |4

Skyline storage applicable when no pivoting is needed, e.g. for banded,
symmetric, and positive definite matrices: FEM and FD methods. Skyline solvers
are usually based on Cholesky factorization (which preserves the skyline)
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Special Matrices:

Symmetric Coefficient Matrices:

Symmetric (Positive-Definite) Matrix

* If no pivoting, the matrix remains symmetric after Gauss Elimination/LU decompositions

(k+1) _

Proof: Show that if @’ =a'y then ;" =al"" using:
k+1 k k k k
G;Ej ) = ar,gj) - mika&;j): mir = aék)/aék)

» Gauss Elimination symmetric (use only the upper triangular portion of A):

(k) (k)
aij —m, a,g.

(k)
a,. . ...
m, =— i=k+1Lk+2,...,n j=ii+1,..,n

(k+1) _
aij =

» About half the total number of ops than full GE
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Special Matrices:
Symmetric, Positive Definite Matrix

1. Sylvester Criterion:
A symmetric matrix is Positive Definite if and only if:
det(A,) >0 for k=1,2,....,n, where A is matrix of k first lines/columns

Symmetric Positive Definite matrices frequent in engineering

2. For a symmetric positive definite A, one thus has the following properties

a) The maximum elements of A are on the main diagonal

b) For a Symmetric, Positive Definite A:  No pivoting needed

(k+1)

(k)
ii <2 d; | .

a

c) The elimination is stable: To show this, use a,fj <aya, in

(k+1) _ (k) (k)
a; " =a;’ —m, a
4®
m, = ’(“k), i=k+1Lk+2,..,n j=i,i+1,..,n
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Special Matrices:
Symmetric, Positive Definite Matrix

(k+1) —

a; i my dy min(i,j)

The general GE e a;= 3 mikag})
my =—l5, i=k+Lk+2,..n j=ii+l..n k=1
A
becomes: A—T1U— ﬁTﬁ
Choleski Factorization ﬁ — [m?ﬂ
Complex Conjugate where
_ k‘_ 1/2 )
Mg = (ﬂmg — 2y=1 mkﬁmkﬁ) L1
me. — QiR =3y Mt i=k+1 n =L
ik Mk » T LA )

No pivoting needed

f Complex Conjugate and Transpose
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Linear Systems of Equations: lterative Methods

Sparse (large) Full-bandwidth Systems (frequent in practice)

Ox X o X lterative Methods are then efficient

0 X
0 0 : : : :
Analogous to iterative methods obtained for roots of equations,

0o X l.e. Open Methods: Fixed-point, Newton-Raphson, Secant

0o X Example of Iteration equation

Ax=b = Ax-b=0
X=X+AX-b =

X =x*+Ax* —b=(A+Dx" -b

General Stationary lteration Formula
xX'"=Bx*+c  k=0,12,...

Compatibility condition for Ax=b to be the solution:

Write ¢=CDb
ps: B and c could be
function of k (non-stationary) A"'b=BA"'b+Cb
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Linear Systems of Equations: Iterative Methods

Convergence
Convergence Convergence Analysis
HEU’HU — iH — 0 for £k — o <) — Bx® 4 ¢
lteration — Matrix form % — Bx4c
—(k > (k _
X(+1):Bx()+c,k20,... N <+ _ 5 — ﬁ(fik)—i)

_ gt (% _ %)

—k+1 k+1
B

[ x| </

< —=| < B | -

Sufficient Condition for Convergence: HﬁH <1
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||B||<1 for a chosen matrix norm
Infinite norm often used in practice

T
|Al; = max z | ;] “Maximum Column Sum”
I<j<n
Tt
|A]lo = max > |ay] “Maximum Row Sum’
l<i<m < ;
j':

1/2
|a. .|2 “The Frobenius norm” (also called Euclidean
¥ ” . : ;
norm)”, which for matrices differs from:

Al = (fj

IAllz = v/ Amax(A*A) “The I-2 norm” (also called spectral norm)
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Linear Systems of Equations: Iterative Methods
Convergence: Necessary and Sufficient Condition

Convergence Convergence Analysis
HEU’HU — iH — 0 for k— o <) — Bx® 4 ¢
Iteration — Matrix form % — Bxdic
—(k+1) _ =k — _ —
x! )—BX()+C;'(‘3_O:"- <+ _ % — E(i“”)—i)

- B (Y -x)

k+1

<0 —x] < B Il - x| < [B] " = -]

Necessary and Sufficient Condition for Convergence:

Spectral radius of B is smaller than one: | p(B) = max \/11.\ <1, where A =-eigenvalue(B, )

(proof: use eigendecomposition of B) (This ensures ||B||<1)
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