

2.29 Numerical Fluid Mechanics Spring 2015 – Lecture 7

REVIEW Lecture 6:

- Direct Methods for solving linear algebraic equations
 - LU decomposition/factorization
 - Separates time-consuming elimination for A from that for b / B

$$\overline{\overline{\mathbf{A}}} = \overline{\overline{\mathbf{L}}} \cdot \overline{\overline{\mathbf{U}}} \longrightarrow \overline{\overline{\mathbf{L}}} \vec{y} = \vec{b}$$
 $\overline{\overline{\mathbf{U}}} \vec{x} = \vec{y}$

- Derivation, assuming no pivoting needed: $a_{ij} = \sum_{k=1}^{\min(i,j)} m_{ik} a_{kj}^{(k)}$
- Number of Ops: Same as for Gauss Elimination
- Pivoting: Use pivot element "pointer vector"
- Variations: Doolittle and Crout decompositions, Matrix Inverse
- Error Analysis for Linear Systems
 - Matrix norms
 - Condition Number for Perturbed RHS and LHS: $K(\overline{\overline{\mathbf{A}}}) = \left\|\overline{\overline{\mathbf{A}}}^{-1}\right\| \left\|\overline{\overline{\mathbf{A}}}\right\|$
- Special Matrices: Intro

TODAY (Lecture 7): Systems of Linear Equations III

Direct Methods

- Gauss Elimination
- LU decomposition/factorization
- Error Analysis for Linear Systems
- Special Matrices: LU Decompositions
 - Tri-diagonal systems: Thomas Algorithm
 - General Banded Matrices
 - Algorithm, Pivoting and Modes of storage
 - Sparse and Banded Matrices
 - Symmetric, positive-definite Matrices
 - Definitions and Properties, Choleski Decomposition

Iterative Methods

- Jacobi's method
- Gauss-Seidel iteration
- Convergence

Reading Assignment

- Chapters 11 of "Chapra and Canale, Numerical Methods for Engineers, 2006/2010/2014."
 - Any chapter on "Solving linear systems of equations" in references on CFD references provided. For example: chapter 5 of "J. H. Ferziger and M. Peric, Computational Methods for Fluid Dynamics. Springer, NY, 3rd edition, 2002"

Special Matrices

- Certain Matrices have particular structures that can be exploited, i.e.
 - Reduce number of ops and memory needs
- Banded Matrices:
 - Square banded matrix that has all elements equal to zero, excepted for a band around the main diagonal.
 - Frequent in engineering and differential equations:
 - Tri-diagonal Matrices
 - Wider bands for higher-order schemes
 - Gauss Elimination or LU decomposition inefficient because, if pivoting is not necessary, all elements outside of the band remain zero (but direct GE/LU would manipulate these zero elements anyway)
- Symmetric Matrices
- Iterative Methods:
 - Employ initial guesses, than iterate to refine solution
 - Can be subject to round-off errors

Special Matrices:

Tri-diagonal Systems Example

Forced Vibration of a String

Example of a travelling pluse:

Consider the case of a Harmonic excitation

$$f(x,t) = -f(x) \cos(\omega t)$$

Applying Newton's law leads to the wave equation: With separation of variables, one obtains the equation for modal amplitudes, see eq. (1) below:

$$\begin{cases} Y_{tt} - c^2 Y_{xx} = f(x,t) \\ Y(x,t) = \tau(t) \ y(x) \end{cases}$$

Differential Equation for the amplitude:

$$\frac{d^2y}{dx^2} + k^2y = f(x) \qquad (1)$$

Boundary Conditions:
$$y(0) = 0$$
, $y(L) = 0$

Special Matrices: Tri-diagonal Systems

Forced Vibration of a String

Harmonic excitation

$$f(x,t) = f(x) \cos(\omega t)$$

Differential Equation:

$$\frac{d^2y}{dx^2} + k^2y = f(x) \quad (1)$$

Boundary Conditions:

$$y(0) = 0 , \quad y(L) = 0$$

Finite Difference

$$\left. \frac{d^2y}{dx^2} \right|_{x} \simeq \frac{y_{i-1} - 2y_i + y_{i+1}}{h^2} + O(h^2)$$

Discrete Difference Equations

$$y_{i-1} + ((kh)^2 - 2)y_i + y_{i+1} = f(x_i)h^2$$

Matrix Form:

Tridiagonal Matrix

If kh < 1 or $kh > \sqrt{3}$ symmetric, negative or positive definite: No pivoting needed

Note: for 0 < kh < 1 Negative definite => Write: **A'=-A** and $\overline{y}' = -\overline{y}'$ to render matrix positive definite

Special Matrices: Tri-diagonal Systems

General Tri-diagonal Systems: Bandwidth of 3

$$\begin{bmatrix} a_1 & c_1 & \cdot & \cdot & \cdot & \cdot & 0 \\ b_2 & a_2 & c_2 & & & \cdot \\ \cdot & \cdot & \cdot & \cdot & & \cdot \\ \cdot & b_i & a_i & c_i & & \cdot \\ \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\ 0 & \cdot & \cdot & \cdot & \cdot & b_n & a_n \end{bmatrix} \overline{\mathbf{x}} = \begin{bmatrix} f_1 \\ \cdot \\ \cdot \\ f_i \\ \cdot \\ \cdot \\ \cdot \\ f_n \end{bmatrix}$$

$$\overline{\mathbf{x}} = \left\{ \begin{array}{c} f_1 \\ \cdot \\ \cdot \\ f_i \\ \cdot \\ \cdot \\ f_n \end{array} \right\}$$

LU Decomposition

$$\overline{\overline{\mathbf{A}}} = \overline{\overline{\mathbf{L}}\overline{\mathbf{U}}}$$

$$\overline{\overline{A}} = \overline{\overline{L}}\overline{\overline{U}} \qquad \left\{ egin{array}{ll} \overline{\overline{\overline{L}}}\overline{\overline{y}} &=& \overline{\overline{f}} \\ \overline{\overline{\overline{U}}}\overline{\overline{x}} &=& \overline{\overline{y}} \longrightarrow \overline{\overline{\overline{U}}} = \end{array}
ight.$$

Three steps for LU scheme:

- 1. Decomposition (GE): $a_{ij}^{(k+1)} = a_{ij}^{(k)} m_{ik} a_{kj}^{(k)}, \ m_{ik} = a_{ik}^{(k)} / a_{kk}^{(k)}$
- 2. Forward substitution $\overline{\overline{L}}\overline{y} = \overline{f}$
- 3. Backward substitution $\overline{\mathbf{U}}\overline{\mathbf{x}} = \overline{\mathbf{y}}$

α_1	c_1				0
	α_2	c_2			
			α_i	c_i	
0					α_n

Special Matrices: Tri-diagonal Systems **Thomas Algorithm**

By identification with the general LU decomposition, $a_{ij}^{(k+1)} = a_{ij}^{(k)} - m_{ik} a_{ki}^{(k)}, \quad m_{ik} = a_{ik}^{(k)} / a_{kk}^{(k)}$ one obtains,

$$\overline{\overline{\mathbf{L}}} = \begin{bmatrix} 1 & \cdot & \cdot & \cdot & \cdot & 0 \\ \beta_2 & 1 & & & \cdot \\ \cdot & \cdot & \cdot & \cdot & \cdot \\ \cdot & \beta_i & 1 & & \cdot \\ \cdot & \cdot & \cdot & \cdot & \cdot \\ 0 & \cdot & \cdot & \cdot & \cdot & \beta_n & 1 \end{bmatrix}$$
 1. Factorization/Decomposition $\alpha_1 = a_1$
$$\beta_k = \frac{b_k}{\alpha_{k-1}}, \quad \alpha_k = a_k - \beta_k c$$
 2. Forward Substitution
$$y_1 = f_1, \quad y_i = f_i - \beta_i y_{i-1}$$

1. Factorization/Decomposition
$$\alpha_1=a_1$$

$$\beta_k = \frac{b_k}{\alpha_{k-1}}, \quad \alpha_k = a_k - \beta_k c_{k-1}, \quad k = 2, 3, \dots n$$

$$y_1 = f_1$$
, $y_i = f_i - \beta_i y_{i-1}$, $i = 2, 3, \dots n$

3. Back Substitution

$$x_n = \frac{y_n}{\alpha_n}, \ x_i = \frac{y_i - c_i x_{i+1}}{\alpha_i}, \ i = n - 1, \dots 1$$

Number of Operations: Thomas Algorithm

3*(n-1) operations 2*(n-1) operations 3*(n-1)+1 operations

 $8*(n-1) \sim O(n)$ operations

Special Matrices: General, Banded Matrix

p super-diagonals q sub-diagonals w = p + q + 1 bandwidth

General Banded Matrix $(p \neq q)$

Banded Symmetric Matrix (p = q = b)

$$a_{ij} = a_{ji}, |i - j| \le b$$

 $a_{ij} = a_{ji} = 0, |i - j| > b$

w = 2 b + 1 is called the bandwidth b is the half-bandwidth

Special Matrices:

General, Banded Matrix

LU Decomposition via Gaussian Elimination

If No Pivoting: the zeros are preserved

$$m_{ij} = \frac{a_{ij}^{(j)}}{a_{jj}^{(j)}} = 0$$
 if $j > i$ or $i > j + q$ (banded)

$$u_{ij} = a_{ij}^{(i)} = a_{ij}^{(i-1)} - m_{i,i-1} a_{i-1,j}^{(i-1)}$$
 $u_{ij} = 0$ if $i > j$ or $j > i + p$ (as gen. case) (banded)

Special Matrices: General, Banded Matrix

LU Decomposition via Gaussian Elimination With **Partial Pivoting** (by rows):

Consider pivoting the 2 rows as below:

Then, the bandwidth of L remains unchanged,

$$m_{ij} = 0$$
 if $j > i$ or $i > j + q$

but the bandwidth of U becomes as that of A

$$u_{ij} = 0$$
 if $i > j$ or $j > i + p + q$

$$w = p + 2 q + 1$$
 bandwidth

Special Matrices: General, Banded Matrix

Compact Storage

Matrix size: n^2

Matrix size: n (p+2q+1)

Special Matrices: Sparse and Banded Matrix

'Skyline' Systems

(typically for symmetric matrices)

Skyline storage applicable when no pivoting is needed, e.g. for banded, symmetric, and positive definite matrices: FEM and FD methods. Skyline solvers are usually based on Cholesky factorization (which preserves the skyline)

Special Matrices: Symmetric (Positive-Definite) Matrix

Symmetric Coefficient Matrices:

If no pivoting, the matrix remains symmetric after Gauss Elimination/LU decompositions

Proof: Show that if
$$a_{ij}^{(k)} = a_{ji}^{(k)}$$
 then $a_{ij}^{(k+1)} = a_{ji}^{(k+1)}$ using:

$$a_{ij}^{(k+1)} = a_{ij}^{(k)} - m_{ik} a_{kj}^{(k)}, \quad m_{ik} = a_{ik}^{(k)} / a_{kk}^{(k)}$$

Gauss Elimination symmetric (use only the upper triangular portion of A):

$$a_{ij}^{(k+1)} = a_{ij}^{(k)} - m_{ik} \ a_{kj}^{(k)}$$

$$m_{ik} = \frac{a_{ki}^{(k)}}{a_{kk}^{(k)}}, \qquad i = k+1, k+2, ..., n \qquad j = i, i+1, ..., n$$

About half the total number of ops than full GE

Special Matrices: Symmetric, Positive Definite Matrix

1. Sylvester Criterion:

A symmetric matrix is Positive Definite if and only if: $det(\mathbf{A}_k) > 0$ for k=1,2,...,n, where \mathbf{A}_k is matrix of k first lines/columns

Symmetric Positive Definite matrices frequent in engineering

2. For a symmetric positive definite A, one thus has the following properties

- a) The maximum elements of A are on the main diagonal
- b) For a Symmetric, Positive Definite A: No pivoting needed
- c) The elimination is stable: $\left|a_{ii}^{(k+1)}\right| \le 2\left|a_{ii}^{(k)}\right|$. To show this, use $a_{ki}^2 \le a_{kk}a_{ii}$ in

$$a_{ij}^{(k+1)} = a_{ij}^{(k)} - m_{ik} \ a_{kj}^{(k)}$$

$$m_{ik} = \frac{a_{ki}^{(k)}}{a_{kk}^{(k)}}, \qquad i = k+1, k+2, ..., n \qquad j = i, i+1, ..., n$$

Special Matrices:

Symmetric, Positive Definite Matrix

The general GE
$$\begin{cases} a_{ij}^{(k+1)} = a_{ij}^{(k)} - m_{ik} \ a_{kj}^{(k)} \\ m_{ik} = \frac{a_{ki}^{(k)}}{a_{kk}^{(k)}}, & i = k+1, k+2, ..., n \quad j = i, i+1, ..., n \end{cases} \qquad a_{ij} = \sum_{k=1}^{\min(i,j)} m_{ik} a_{kj}^{(k)}$$
 becomes:
$$\overline{\overline{\mathbf{A}}} = \overline{\overline{\mathbf{L}}\overline{\mathbf{U}}} = \overline{\overline{\mathbf{U}}}^{\dagger} \overline{\overline{\mathbf{U}}}$$

$$\overline{\overline{\mathbf{A}}} = \overline{\overline{\mathbf{L}}\overline{\mathbf{U}}} = \overline{\overline{\mathbf{U}}}^\dagger \overline{\overline{\mathbf{U}}}$$

$$\overline{\overline{\mathbf{U}}}^{\dagger} = [m_{ij}]$$

Complex Conjugate where
$$m_{kk} = \left(a_{kk} - \sum_{\ell=1}^{k-1} m_{k\ell} \overline{m}_{k\ell}\right)^{1/2}$$

$$m_{ik} = \left(a_{ik} - \sum_{\ell=1}^{k-1} m_{i\ell} \overline{m}_{k\ell}\right)^{1/2}, \ i = k+1, \ldots n$$
 No pivoting

No pivoting needed

† Complex Conjugate and Transpose

Linear Systems of Equations: Iterative Methods

Sparse (large) Full-bandwidth Systems (frequent in practice)

Iterative Methods are then efficient

Analogous to iterative methods obtained for roots of equations, i.e. Open Methods: Fixed-point, Newton-Raphson, Secant

Example of Iteration equation

$$\mathbf{A} \mathbf{x} = \mathbf{b} \implies \mathbf{A} \mathbf{x} - \mathbf{b} = 0$$

$$\mathbf{x} = \mathbf{x} + \mathbf{A} \mathbf{x} - \mathbf{b} \implies$$

$$\mathbf{x}^{k+1} = \mathbf{x}^k + \mathbf{A} \mathbf{x}^k - \mathbf{b} = (\mathbf{A} + \mathbf{I}) \mathbf{x}^k - \mathbf{b}$$

ps: **B** and **c** could be function of *k* (non-stationary)

General Stationary Iteration Formula

$$\mathbf{x}^{k+1} = \mathbf{B} \ \mathbf{x}^k + \mathbf{c}$$
 $k = 0, 1, 2, ...$

Compatibility condition for **Ax**=**b** to be the solution:

Write
$$\mathbf{c} = \mathbf{C} \mathbf{b}$$

 $\mathbf{A}^{-1}\mathbf{b} = \mathbf{B} \mathbf{A}^{-1} \mathbf{b} + \mathbf{C} \mathbf{b}$ \Rightarrow $(\mathbf{I} - \mathbf{B}) \mathbf{A}^{-1} = \mathbf{C} \text{ or } \mathbf{B} = \mathbf{I} - \mathbf{C} \mathbf{A}$

Linear Systems of Equations: Iterative Methods Convergence

Convergence

$$\begin{split} \left\| \overline{\mathbf{x}}^{(k+1)} - \overline{\mathbf{x}} \right\| &\to 0 \ \text{ for } \ k \to \infty \\ \text{Iteration - Matrix form} \\ \overline{\mathbf{x}}^{(k+1)} &= \overline{\overline{\mathbf{B}}} \overline{\mathbf{x}}^{(k)} + \overline{\mathbf{c}} \ , \ k = 0, \dots \end{split}$$

Convergence Analysis

$$\overline{\mathbf{x}}^{(k+1)} = \overline{\overline{\mathbf{B}}} \overline{\mathbf{x}}^{(k)} + \overline{\mathbf{c}}$$

$$\overline{\mathbf{x}} = \overline{\overline{\mathbf{B}}} \overline{\mathbf{x}} + \overline{\mathbf{c}}$$

$$\Rightarrow \overline{\mathbf{x}}^{(k+1)} - \overline{\mathbf{x}} = \overline{\overline{\mathbf{B}}} \left(\overline{\mathbf{x}}^{(k)} - \overline{\mathbf{x}} \right)$$

$$= \overline{\overline{\mathbf{B}}} \cdot \overline{\overline{\mathbf{B}}} \left(\overline{\mathbf{x}}^{(k-1)} - \overline{\mathbf{x}} \right)$$

$$\cdot$$

$$= \overline{\overline{\mathbf{B}}}^{k+1} \left(\overline{\mathbf{x}}^{(0)} - \overline{\mathbf{x}} \right)$$

$$||\overline{\mathbf{x}}^{(k+1)} - \overline{\mathbf{x}}|| \le ||\overline{\overline{\mathbf{B}}}^{k+1}|| ||\overline{\mathbf{x}}^{(0)} - \overline{\mathbf{x}}|| \le ||\overline{\overline{\mathbf{B}}}||^{k+1} ||\overline{\mathbf{x}}^{(0)} - \overline{\mathbf{x}}||$$

Sufficient Condition for Convergence:

$$\left|\left|\overline{\overline{\mathbf{B}}}\right|\right| < 1$$

2.29

||B||<1 for a chosen matrix norm Infinite norm often used in practice

$$||A||_1 = \max_{1 \le j \le n} \sum_{i=1}^m |a_{ij}|$$

$$||A||_{\infty} = \max_{1 \le i \le m} \sum_{j=1}^{n} |a_{ij}|$$

$$||A||_F = \left(\sum_{i=1}^m \sum_{j=1}^n |a_{ij}|^2\right)^{1/2}$$

$$||A||_2 = \sqrt{\lambda_{\max}(A^*A)}$$

"Maximum Column Sum"

"Maximum Row Sum"

"The Frobenius norm" (also called Euclidean norm)", which for matrices differs from:

"The I-2 norm" (also called spectral norm)

Linear Systems of Equations: Iterative Methods

Convergence: Necessary and Sufficient Condition

Convergence

$$\begin{split} \left\| \overline{\mathbf{x}}^{(k+1)} - \overline{\mathbf{x}} \right\| &\to 0 \ \text{ for } \ k \to \infty \\ \text{Iteration - Matrix form} \\ \overline{\mathbf{x}}^{(k+1)} &= \overline{\overline{\mathbf{B}}} \overline{\mathbf{x}}^{(k)} + \overline{\mathbf{c}} \ , \ k = 0, \dots \end{split}$$

Convergence Analysis

$$\overline{\mathbf{x}}^{(k+1)} = \overline{\overline{\mathbf{B}}} \overline{\mathbf{x}}^{(k)} + \overline{\mathbf{c}}$$

$$\overline{\mathbf{x}} = \overline{\overline{\mathbf{B}}} \overline{\mathbf{x}} + \overline{\mathbf{c}}$$

$$\Rightarrow \overline{\mathbf{x}}^{(k+1)} - \overline{\mathbf{x}} = \overline{\overline{\mathbf{B}}} \left(\overline{\mathbf{x}}^{(k)} - \overline{\mathbf{x}} \right)$$

$$= \overline{\overline{\mathbf{B}}} \cdot \overline{\overline{\mathbf{B}}} \left(\overline{\mathbf{x}}^{(k-1)} - \overline{\mathbf{x}} \right)$$

$$\cdot$$

$$= \overline{\overline{\mathbf{B}}}^{k+1} \left(\overline{\mathbf{x}}^{(0)} - \overline{\mathbf{x}} \right)$$

$$||\overline{\mathbf{x}}^{(k+1)} - \overline{\mathbf{x}}|| \le ||\overline{\overline{\mathbf{B}}}^{k+1}|| ||\overline{\mathbf{x}}^{(0)} - \overline{\mathbf{x}}|| \le ||\overline{\overline{\mathbf{B}}}||^{k+1} ||\overline{\mathbf{x}}^{(0)} - \overline{\mathbf{x}}||$$

Necessary and Sufficient Condition for Convergence:

Spectral radius of **B** is smaller than one:
$$\rho(\mathbf{B}) = \max_{i=1}^{n} |\lambda_i| < 1$$
, where $\lambda_i = \text{eigenvalue}(\mathbf{B}_{n \times n})$

(proof: use eigendecomposition of **B**)

(This ensures ||B||<1)

MIT OpenCourseWare http://ocw.mit.edu

2.29 Numerical Fluid Mechanics Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.