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REVIEW Lecture 6:
• Direct Methods for solving linear algebraic equations

– LU decomposition/factorization

• Separates time-consuming elimination for A from that for b / B

• Derivation, assuming no pivoting needed:

• Number of Ops: Same as for Gauss Elimination

• Pivoting: Use pivot element “pointer vector”

• Variations: Doolittle and Crout decompositions, Matrix Inverse  

– Error Analysis for Linear Systems

• Matrix norms

• Condition Number for Perturbed RHS and LHS: 

– Special Matrices: Intro
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TODAY (Lecture 7): Systems of Linear Equations III

• Direct Methods 

– Gauss Elimination

– LU decomposition/factorization

– Error Analysis for Linear Systems

– Special Matrices: LU Decompositions 

• Tri-diagonal systems: Thomas Algorithm

• General Banded Matrices

– Algorithm, Pivoting and Modes of storage

– Sparse and Banded Matrices

• Symmetric, positive-definite Matrices

– Definitions and Properties, Choleski Decomposition

• Iterative Methods 

– Jacobi’s method 

– Gauss-Seidel iteration

– Convergence
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Reading Assignment

• Chapters 11 of “Chapra and Canale, Numerical Methods for 
Engineers, 2006/2010/2014.”

– Any chapter on “Solving linear systems of equations” in references on 
CFD references provided. For example: chapter 5 of “J. H. Ferziger
and M. Peric, Computational Methods for Fluid Dynamics. Springer, 
NY, 3rd edition, 2002”
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Special Matrices

• Certain Matrices have particular structures that can be exploited, i.e. 

– Reduce number of ops and memory needs

• Banded Matrices: 

– Square banded matrix that has all elements equal to zero, excepted for a band 

around the main diagonal. 

– Frequent in engineering and differential equations:

• Tri-diagonal Matrices 

• Wider bands for higher-order schemes

– Gauss Elimination or LU decomposition inefficient because, if pivoting is not 

necessary, all elements outside of the band remain zero (but direct GE/LU 

would manipulate these zero elements anyway)

• Symmetric Matrices

• Iterative Methods:

– Employ initial guesses, than iterate to refine solution

– Can be subject to round-off errors
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Special Matrices:  

Tri-diagonal Systems Example

Y(x,t)x i

Forced Vibration of a String

f(x,t)

Consider the case of a Harmonic excitation

f(x,t) =- f(x) cos(wt)

2 ( , )
( , ) ( ) ( )

tt xxY c Y f x t
Y x t t y x

  




Applying Newton’s law leads to the wave equation: 

With separation of variables, one obtains the 

equation for modal amplitudes, see eq. (1) below:

Differential Equation for the amplitude:

Boundary Conditions:

(1)

Example of a travelling pluse:
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Special Matrices:  Tri-diagonal Systems

Y(x,t)x i

Forced Vibration of a String

f(x,t)

Harmonic excitation

f(x,t) = f(x) cos(wt)

Differential Equation:

Boundary Conditions:

Finite Difference

Discrete Difference Equations

Matrix Form:

Tridiagonal Matrix

+ O(h2)

(1)

If                                symmetric, negative or positive definite: No pivoting neededkh 1 or kh  3

+

y

Note: for  0< kh <1 Negative definite => Write: A’=-A and                to render matrix positive definite' 'y y 
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General Tri-diagonal Systems:    Bandwidth of 3

LU Decomposition

Special Matrices:  Tri-diagonal Systems

Three steps for LU scheme:

1. Decomposition (GE): 

2. Forward substitution

3. Backward substitution
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1. Factorization/Decomposition

2. Forward Substitution

3. Back Substitution

LU Factorization: 3*(n-1) operations

Forward substitution: 2*(n-1) operations

Back substitution: 3*(n-1)+1 operations

Total: 8*(n-1) ~ O(n) operations

Special Matrices:  Tri-diagonal Systems

Thomas Algorithm

By identification with the general LU decomposition,

one obtains,

Number of Operations: Thomas Algorithm

i
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G

2.29 Numerical Fluid Mechanics PFJL  Lecture 7,    9

eneral, Banded Matrix

0

0

p

q

p super-diagonals
q sub-diagonals
w = p + q + 1 bandwidth

w = 2 b + 1 is called the bandwidth
b is the half-bandwidth

General Banded Matrix   (p ≠ q) 

Banded Symmetric Matrix (p = q = b) 
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0

0
q

0

0

LU Decomposition via Gaussian Elimination
If No Pivoting: the zeros are preserved 

p

Special Matrices:

G

= =

eneral, Banded Matrix

a( )j

m ij
ij  ( )j 0       if      j  i   or    i  j q

a jj

i

j

i

j

u a(i i) a(  1) m a(i 1)
ij  ij  ij  i ,i 1 i 1, j

uij  0       if      i  j    or    j i  p
(as gen. case)          (banded) (as gen. case)          (banded)
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0

0

q

=

00

q

pq

w

Special Matrices:

G

LU Decomposition via Gaussian Elimination
With Partial Pivoting (by rows):

eneral, Banded Matrix

0       if         or    ijm j i i j q   

0       if         or    iju i j j i p q    

Then, the bandwidth of L remains unchanged,

but the bandwidth of U becomes as that of A

w = p + 2 q +1 bandwidth

Consider pivoting the 2 rows as below:
p
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0

0

q

0

0

p

q

i

p

Compact Storage

Diagonal (length n)
q

Matrix size: n2 Matrix size: n (p+2q+1)
j

i

j’=j – i+ q

Needed for
Pivoting only

Special Matrices:

General, Banded Matrix

n – q
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‘Skyline’ Systems 
(typically for symmetric matrices) 

…..

…..

…..

Skyline storage applicable when no pivoting is needed, e.g. for banded, 

symmetric, and positive definite matrices: FEM and FD methods.  Skyline solvers 

are usually based on Cholesky factorization (which preserves the skyline)

‘Skyline’

Storage

Pointers 1 4 9 11 16 20

0

0

Special Matrices:

Sparse and Banded Matrix
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Symmetric Coefficient Matrices: 

• If no pivoting, the matrix remains symmetric after Gauss Elimination/LU decompositions

Proof: Show that if                        then                            using:

• Gauss Elimination symmetric (use only the upper triangular portion of A):

• About half the total number of ops than full GE

Special Matrices:

Symmetric (Positive-Definite) Matrix

( ) ( )k k
ij jia a

( 1) ( 1)k k
ij jia a 

( 1) ( ) ( )

( )

( ) , 1, 2,..., , 1,...,

k k k
ij ij ik kj

k
ki

ik k
kk

a a m a

am i k k n j i i n
a

  

     
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Special Matrices:

Symmetric, Positive Definite Matrix

1. Sylvester Criterion: 

A symmetric matrix is Positive Definite if and only if: 

det(Ak) > 0 for   k=1,2,…,n, where  Ak is matrix of k first lines/columns

Symmetric Positive Definite matrices frequent in engineering

a) The maximum elements of A are on the main diagonal

b) For a Symmetric, Positive Definite A:    No pivoting needed

c) The elimination is stable:                         .     To show this, use                  in

2. For a symmetric positive definite A, one thus has the following properties

( 1) ( ) ( )

( )

( ) , 1, 2,..., , 1,...,

k k k
ij ij ik kj

k
ki

ik k
kk

a a m a

am i k k n j i i n
a

  

     

( 1) ( )2k k
ii iia a  2

kj kk jja a a



PFJL  Lecture 7,    16Numerical Fluid Mechanics2.29

Choleski Factorization 

where 

Complex Conjugate and Transpose

Special Matrices:

Symmetric, Positive Definite Matrix

The general GE       

becomes:

( 1) ( ) ( )

( )

( ) , 1, 2,..., , 1,...,

k k k
ij ij ik kj

k
ki

ik k
kk

a a m a

am i k k n j i i n
a

  

     

No pivoting needed

Complex Conjugate 
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Linear Systems of Equations: Iterative Methods

x
x

x

x x

xx

x x
x

0

0

0

0

0

0

Sparse (large) Full-bandwidth Systems (frequent in practice)

0
0

0

0

0

0

0

0

0

Example of Iteration equation

Analogous to iterative methods obtained for roots of equations, 

i.e. Open Methods: Fixed-point, Newton-Raphson, Secant

Iterative Methods are then efficient

1

0

( )k k k k

   

   

     

A x b A x b

x x A x b

x x A x b A I x b

General Stationary Iteration Formula

1 0,1,2,...k k k   x B x c

Compatibility condition for Ax=b to be the solution:

1
1 1

Write    
( )   or   

 

 
    

  

c C b
I B A C B I CA

A b BA b Cb
ps: B and c could be 

function of k (non-stationary)
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Convergence

Iteration – Matrix form

Convergence Analysis

Sufficient Condition for Convergence:

Linear Systems of Equations: Iterative Methods

Convergence


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||B||<1 for a chosen matrix norm

Infinite norm often used in practice

“Maximum Column Sum”

“Maximum Row Sum”

“The Frobenius norm” (also called Euclidean 

norm)”, which for matrices differs from:

“The l-2 norm” (also called spectral norm)
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Convergence

Iteration – Matrix form

Convergence Analysis

Necessary and Sufficient Condition for Convergence:

Linear Systems of Equations: Iterative Methods

Convergence: Necessary and Sufficient Condition

Spectral radius of B is smaller than one:

(proof: use eigendecomposition of B)

1...
( ) max 1, where eigenvalue( )i i n ni n

   


  B B

(This ensures ||B||<1)


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