2.29 Numerical Fluid Mechanics
Spring 2015 — Lecture 9

REVIEW Lecture 8:

* Direct Methods for solving (linear) algebraic equations
— Gauss Elimination

— LU decomposition/factorization
— Error Analysis for Linear Systems and Condition Numbers
— Special Matrices (Tri-diagonal, banded, sparse, positive-definite, etc)

« Iterative Methods: xX'=Bx‘+c  k=0,12,..
“Stationary” methods:
— Jacobi’s method x*'=-D'(L+U)x*+D"b

— Gauss-Seidel iteration |y — (D4 L)'"Ux* +(D+L)"'b
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2.29 Numerical Fluid Mechanics

Spring 2015 — Lecture 9
REVIEW Lecture 8, Iterative Methods Cont’d:

— Convergence: Necessary and sufficient condition
p(B)= max ‘/11‘ <1, where 4, =ecigenvalue(B, )| (ensures suffic. ||B||<1)

nxn

« Jacobi’s method Sufficient conditions:
. . ) « Both converge if A stricly diagonally dominant
* Gauss-Seidel iteration « Gauss-Seidel also convergent if A sym. positive definite
. . I<n_.
— Stop Ciriteria, e.g.: l—x <z

I =7 || <& where r,=Ax,—b
— Example Il <e
— Successive Over-Relaxation Methods: (decrease p(B) for faster convergence)

=(D+oL)"' [-oU+(1-w)D]X. +o(D+wlL)'b
“Adaptive” methods:

- dQ(X)—Ax—b——
— Gradient Methods X, =X; + &V, ax N
» Steepest decent . I, = b — AX, (residual at iteration )
Xi+1:Xi+( Tl . jri
r,Ar,

« Conjugate gradient _ , ,
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TODAY (Lecture 9)

g
« End of (Linear) Algebraic Systems

— Gradient Methods and Krylov Subspace Methods

— Preconditioning of Ax=Db

* FINITE DIFFERENCES

— Classification of Partial Differential Equations (PDEs) and examples
with finite difference discretizations

— Error Types and Discretization Properties
» Consistency, Truncation error, Error equation, Stability, Convergence
— Finite Differences based on Taylor Series Expansions

» Higher Order Accuracy Differences, with Example

» Taylor Tables or Method of Undetermined Coefficients

— Polynomial approximations

* Newton’s formulas, Lagrange/Hermite Polynomials, Compact schemes
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References and Reading Assignments

» Chapter 14.2 on “Gradient Methods”, Part 8 (PT 8.1-2),
Chapter 23 on “Numerical Differentiation” and Chapter 18 on
“Interpolation” of “Chapra and Canale, Numerical Methods for
Engineers, 2006/2010/2014.”

« Chapter 3 on “Finite Difference Methods” of “J. H. Ferziger
and M. Peric, Computational Methods for Fluid Dynamics.
Springer, NY, 3 edition, 2002”

« Chapter 3 on “Finite Difference Approximations” of “H. Lomax,
T. H. Pulliam, D.W. Zingg, Fundamentals of Computational
Fluid Dynamics (Scientific Computation). Springer, 2003
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= Derivation provided in

Conjugate Gradient Method  recture

» Check CGM_new.m

« Definition: “A-conjugate vectors” or “Orthogonality with respect to a matrix (metric)”:

if A is symmetric & positive definite,
For i#j wesay v,v, are orthogonal with respect to A, if v. Ay =0

* Proposed in 1952 (Hestenes/Stiefel) so that directions v, are generated by the
orthogonalization of residuum vectors (search directions are A-conjugate)

— Choose new descent direction as different as possible from old ones, within A-metric

* Algorithm:
Vop=Tp= b— A:[:D
do

o; = (v]r;)/(v] Av)) Step length

i1 = T + oy Approximate solution

Tipl =T — Oy Av; New Residual

& = —(’l’IATH-l};"{’“IA’“i} Step length &

Vi1 =T h iracti

e i1+ Pevs new search direction Figure indicates solution obtained using
until a stop criterion holds Conjugate gradient method (red) and
Note: A v, = one matrix vector multiply at each iteration steepest descent method (green).

2.29 Numerical Fluid Mechanics PFJL Lecture 9,

5



“_ "

— solution with “»” iterations, but decent accuracy with much fewer

- b,Ab,A’b,--
- n,.<n . = span{b,Ab,o--,A”S_1 b}

i

— An iteration to do this is the “Arnoldi’s iteration” which is a stabilized Gram

- nong
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. b,Ab,
- X, arein = span

,A”_l b
— Based on the idea of projecting the “Ax=b problem” into the
n Ax=b
[ J A

- Ax=b x, e /A,
Ax,-b
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Preconditioning of Ax =Db

+ Pre-conditioner approximately solves A x = D.
Pre-multiply by the inverse of a non-singular matrix M, and solve instead:
M-IAx=M-1hb or AMI(Mx)=hb
— Convergence properties based on M-'A or A M-! instead of A'!
— Can accelerate subsequent application of iterative schemes
— Can improve conditioning of subsequent use of non-iterative schemes: GE, LU, etc
Jacobi preconditioning:
— Apply Jacobi a few steps, usually not efficient
Other iterative methods (Gauss-Seidel, SOR, SSOR, etc):
— Usually better, sometimes applied only once
Incomplete factorization (incomplete LU) or incomplete Cholesky
— LU or Cholesky, but avoiding fill-in of already null elements in A
Coarse-Grid Approximations and Multigrid Methods:

— Solve A x=Dbon a coarse grid (or successions of coarse grids)

— Interpolate back to finer grid(s)
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Example of Convergence Studies
for Linear Solvers

10— — 10 —
Jacobi r\\ ‘ - = = SOR|
; - = Gauss-Seidel s | CG
10 - = = SOR 10 M
] N

10° i \ 10~ \ .
E. ab . - : : ,
g 107p 10 \‘ Fig 7.5: Example 7.10, with system of size 961x961:
- - o ' convergence behavior of various iterative schemes
3 ! . . . .
¢ . for the discretized Poisson equation.

10 10° \\

I \
! \
1w "p 10" .
" '0 000 2000 3000 o s0 100
Iterations lterations
10 r y — "
IR et i Fig 7.7: Iteration progress for CG, PCG with the 1C(0)
UE Xy e L= = =peanction)y preconditioner and PCG with the IC preconditioner using

e gom \ 1 drop tolerance tol=0.01

IC(0): is incomplete Cholesky factorization. This is Cholesky
as we have seen it, but a non-zero entry in the factorization
’ \ ! is generated only if A was not zero there to begin with.

Residual nonr
=)
———
-
-
-
I

IC: same, but non-zero entry generated if it is = tol

0 l}) 2‘0 .'j-l) 40 h;() 60
Merations PCG: Preconditioned conjugate gradient
Courtesy of Society for Industrial and Applied

Mathematics (SIAM). Used with permission. Ascher and Greif (S|AM-2011)
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Review of/Summary for lterative Methods

Table removed due to copyright restrictions. Useful reference tables for this material:
Tables PT3.2 and PT3.3 in Chapra, S., and R. Canale. Numerical Methods for Engineers.
6th ed. McGraw-Hill Higher Education, 2009. ISBN: 9780073401065.
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2.29

FINITE DIFFERENCES - Outline

Classification of Partial Differential Equations (PDEs) and examples with
finite difference discretizations

— Elliptic PDEs
— Parabolic PDEs
— Hyperbolic PDEs

Error Types and Discretization Properties

— Consistency, Truncation error, Error equation, Stability, Convergence
Finite Differences based on Taylor Series Expansions
Polynomial approximations

— Equally spaced differences
» Richardson extrapolation (or uniformly reduced spacing)

* lterative improvements using Roomberg’s algorithm
— Lagrange polynomial and un-equally spaced differences

— Compact Difference schemes
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Differential Equation

L(Pa w,x, t) =0 “Differentiation”

Diff E " “Integration”
Sommerfeld Wave Equation (c= wave speed). rerence tquation
This radiation condition is sometimes used at L (Provns Wiy Ty b)) = 0
open boundaries of ocean models. System of Equations
. N-1
Discrete Model S Fi(w;) = B;
J=0
" Linear System of Equations
m ! N-1
_ “Solving linear
Z Aij Wi = Bi e uaﬁons”
—t———t—t—t— > J=0 q
X, X Eigenvalue Problems

Au=)us (A-Aju=0
Non-trivial Solutions

det(f _ )\T) —(0  “Rootfinding”

t = to+mAt, m=0,1,...M—1
T, = ro+nlAzr, n=0,1,...N —1
ow Aw ow Aw

of At Ox  Ax Consistency/Accuracy and Stability => Convergence
(Lax equivalence theorem for well-posed linear problems)

p parameters, e.g. variable ¢
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Classification of

Partial Differential Equations
(2D case, 2" order PDE)

Yy PV(xy,)
Quasi-linear PDE for ¢(x, y)
Aézz —|_ Bq&zy —|_ Céyy — F($, y: ¢J ¢IJ q'r)y)
A,B and C Constants IV, ) dV(x,,y)
B*—4AC > 0 Hyperbolic
B2 _4AC = 0 Parabolic
B?—4AC < 0 Elliptic
n)
(Only valid for two independent variables: x,y) ) R

* In general: 4, B and C are function of. x, y,9,9,, 9,

« Equations may change of type from point to point if 4, B and C vary with x, y, etc.

 Navier-Stokes, incomp., const. viscosity: Du — au +(Uu-V)yus= —le +vVUu+g

Dt ot
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Classification of

Partial Differential Equations
(2D case, 2" order PDE)

Meaning of Hyperbolic, Parabolic and Elliptic

« The general 2" order PDE in 2D: |
Ap +Bg, +Ch =F -
is analogous to the equation for a conic section: k
Ax* +Bxy+Cy° =F N

Parabola- cutting plane

[ ConiC SeCtion: parallel to side of cone,

- Is the intersection of a right circular cone and a plane,
which generates a group of plane curves, including the
circle, ellipse, hyperbola, and parabola

- One characterizes the type of conic sections using the
discriminant B’ - 44C

* PDE:
* B°-44C > 0 (Hyperbolic)
* B°>-44C = 0 (Parabolic)
« B2-44C < 0 (Elliptic)

2.29 Numerical Fluid Mechanics

Circle and Ellipse Hyperbolas

Images courtesy of Duk on
Wikipedia. License: CC-BY.
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http://en.wikipedia.org/wiki/File:Conic_sections_2.png

Examples Heat conduction equation,

/forced or not (dominant in 1D)

o «

A, VzT + f ) (Of - _)

ot pc pc
ou 5 ) Unsteady, diffusive, small amplitude flows
o vViutg T or perturbations (e.g. Stokes Flow)

a

4
 Usually smooth solutions (“diffusion

effect” present)
* "Propagation” problems BC 1- EBC 2:

- Domain of dependence of solution T@.09)=f®| D(xy,0<t<) :TL,L.O=f ()
is domain D (x,y,and 0 <t < «): I ;

* Finite Differences/VVolumes, Finite
Elements
2.29 Numerical Fluid Mechanics PFJL Lecture9, 16
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Partial Differential Equations
Parabolic PDE - Example

Heat Conduction Equation
Insulation

KT (x,t):cht(x,t),0<x<L,0<t<oo

Initial Condition

T(x,O)zf(x),OSxSL .
BOUndary Conditions N
T

0,1 =g, x=1L
T(O,t) = gl’O <t<oo T(L,l):gz X

I'(L,t)=g,,0<t<o
IVP in one dimension (¢), BVP in the other (x)

x Thermal conductivity Time Marching, Explicit or Implicit Schemes
¢ Specific heat capacity

p Density IVP: Initial Value Problem

T Temperature BVP: Boundary Value Problem
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Partial Differential Equations
Parabolic PDE - Example

Heat Conduction Equation

T,(x,t)=al, (x,t),0<x<L,0<t<o neulation

Initial Condition

T(x,O)zf(x),OSxSL
x=10

Boundary Conditions T0,1) = g,(1) x=1L
7(0,t)=g,(t),0<t <o ILy=g,1) X
T(L,t)=g,(t),0<t <
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Partial Differential Equations
Parabolic PDE - Example

Equidistant Sampling

h = L/n t
k = T/m computational stencil

Discretization /
z; = (i—1h, i=2,... ,n—1

t;, = (—-Vk j=1,..., m

Forward (Euler) Finite Difference in time
T'(x;,t,)—T(x,¢, T0,t)=g,(t T(L,t)=g,(t

k j+1
Centered Finite Difference in space ] %? ? : J.J_]

T(x,_,t,)=2T(x,,t,)+T(x,,,1,) O \

Txx(x’ t) = hZ —
™~
\\%
I, =T(x.t;) i-1 1 i+1 ]
Finite Difference Equation T(x,0) = f(x) X
Ti,j+1 o Tu . Ti—l,j _2Ti,j + 7;+1,j
o 2
k h
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Partial Differential Equations
ELLIPTIC: B?-4AC<0

y
4 PV(x,y,)
Quasi-linear PDE for ¢(x,y)
Aézz + Bqﬁ:y + Céyy — F($; Y, ¢: ¢I: éy)
A,B and C Constants dV(x,,y D(x,y) d™M(x,,y)

B?—4AC > 0 Hyperbolic

B? —4AC = 0 Parabolic

B? —4AC < 0 Eliptic

¢(”)(x,y1)
x'
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Partial Differential Equations
Elliptic PDE

Laplace Operator V? = Upr + Uyy
Examples: Laplace Equation — Potential Flow
Vig = 0 —
Ve ¢
Viu + f(z,y)u

. Poisson Equation
9(z,y) « Potential Flow with sources

0 » Steady heat conduction in plate + source
\ Helmholtz equation — Vibration of plates

Uvu=vVu «~—_ S
Steady Convection-Diffusion

Smooth solutions (“diffusion effect”)

Very often, steady state problems

Domain of dependence of u is the full domain D(x,y) => “global” solutions

Finite differ./volumes/elements, boundary integral methods (Panel methods)
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Partial Differential Equations
Elliptic PDE - Example

0<z<a, 0<y<y; y
Equidistant Sampling ux,b) = f>(x)
h = a/(n—1)

Discretization

u,y)=g,v

u(@,y)=g(y)

j+1

z; = (i—1)h,i=1,...,n
y, = (j—Dh,3=1,....m T ¢ E ?

J
Jj-1

Finite Differences

Upe (T, 1) = w(ri-1,y;) — 2“(2;«:2, y;) + ul@it1, y5) +O(h?) )
i-1 1 &Y ]
u(x,0) = fi(x) X
i Yj—1) — 2ulz;, y;) + ulz;, y;
u,,(z,t) = u(zi, yj-1) “‘(ZZ y;) + ulxs, Y1) +O(R?)

Dirichlet BC

2.29 Numerical Fluid Mechanics
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Partial Differential Equations
Elliptic PDE - Example

Discretized Laplace Equation

V2 — u(zi_1,y;) + ulz;, y;—1) — du(xs, y;) + wl(zipr, y;) + i, yi41) _0
— -

y

A

i = u(zy,t))

u(x,b) = fr(x)

Finite Difference Scheme

Uit1j + Uimry T Uij—1 + U1 — 4 ; =0

Boundary Conditions
w(zy,y;) = uw,;, 2<j<m-—1 u(0.y)=g,(»)

u@y)=g,()

jti
u(Tr,y;) = Unj, 2<7<m—1 ——0—£—¢ Jj
-1
u(:ﬂi:yl) = U, ZE l'g?l_]. /
u(zi Yn) = Uin, 2<i <n-—1
i-1 1 >
Global Solution Required ux,0) =f,(x) X
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