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MASSACHUSETTS INSTITUTE OF TECHNOLOGY 
DEPARTMENT OF MECHANICAL ENGINEERING 

CAMBRIDGE, MASSACHUSETTS 02139 
2.29 NUMERICAL FLUID MECHANICS — SPRING 2015 

 
QUIZ 1                         Wednesday, March 11, 2015 

 
The goals of quiz 1 are to: (i) ask some general higher-level questions to ensure you understand broad concepts and 
are able to discuss such concepts and issues with others familiar with numerical fluid mechanics; (ii) show that you 
understand methods and schemes that you learned and that you can apply them in idealized computational problems; 
and (iii), evaluate if you can read numerical codes and recognize what they accomplish. Partial credit will be given 
to partial answers (e.g. accurate descriptions in words of computations required but not carried out). 
 
A. Shorter Concept Questions 
 
Problem I (24 points) 
Briefly answer only 6 of the following 7 questions (a few words to a few sentences is enough, 
with or without a few equations depending on the question). If you answer 7 questions, we will 
give a bonus. 
a) In a floating point real number representation, briefly explain why round-off errors increase 

with the magnitude of the number? 
b) Provide two examples of computations that are sensitive to round-off errors and very briefly 

state why they are sensitive. 
c) Using the bisection method to determine the root of a nonlinear function is not very 

efficient. Nonetheless, provide one example when the use of the bisection method can 
accelerate the convergence of another method. 

d) Using the Taylor expansion,
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method to solve ( ) 0 that can have a higher order of convergence than Newton-Raphson 
but that does not evaluate second-order derivatives (Hint: remember why and how the 
Secant method was derived). 

e) To increase the accuracy of a solver for a linear partial differential equation (PDE), you 
decide to increase the order of the finite-difference scheme. Briefly explain one effect of this 
change on the discrete linear system to be solved. 

f) Consider an iterative scheme, 1 ,k k  x B x c 0,1,2,...,k  used to solve a linear system. 
Briefly explain why the norm of B needs to be smaller than one.   

g) Provide an example and one property of parabolic PDEs.  
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B. Computational Schemes and Idealized Computational Problems 
 
Problem II: Estimation of Errors and Conditioning in Navier-Stokes Equations (18 points) 
 
Consider the incompressible Navier-Stokes momentum equations, 
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We will employ Cartesian coordinates and assume two-dimensional flows. 
a) Assuming a relative error ( , )u v   for the velocity ( , )v u v , estimate the magnitude of the 

 
Consider now the full system solve for a discretized form of the above Navier-Stokes equations.  
c) First, consider a much simpler system: 
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What is a condition number of this system? Is the system well-conditioned?  
Provide one simple way to improve the conditioning of the system. 

d) If at each time-step, the discretized form of the Navier-Stokes equations leads to a coupled 
linear system solve for the two velocities and the pressure, utilize your results in c) to very 

briefly state a simple way to reduce the possible ill-conditioning of the coupled system. 
 
 
Problem III: Consistency and Accuracy of a Finite-Difference Scheme (19 points) 
Consider the one-dimensional heat conduction PDE with constant coefficient  , 
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a) Discretizing time as , 0,1,t n t n    and space as , 1, ,x i x i m   , show that the 
following finite-difference scheme, with 2/s t x   , 
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is consistent with the above heat conduction PDE (1).  (Hint: substitute the unknown exact 
solution ( , )T x t of (1) into each of the four terms of (2), expand each of them in Taylor series 
about the ( , )i n th computational node, and obtain the dominant truncation error of the finite-
difference scheme (2).)  

b) What is the numerical value of s that leads to the highest degree of accuracy (in time or in 
space)? 

corresponding relative error in the advection (momentum) flux fa (u,v)  uv . 

b) Based on the results in a), briefly compare the conditioning of this advection flux fa (u,v) to 

that of a scalar diffusion flux, e.g. ( )d

u
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Problem IV: Conjugate Gradient Method (19 points)  
The conjugate gradient algorithm to solve a linear system Ax b  for a symmetric positive-
definite matrix A is given by: 
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where i i r b Ax  is the residual at step i. 

a) Using the “Approximate Solution” stage, 1i i i i  x x v , briefly derive the expression for the 
optimal step length i  by enforcing 1i Ax b  but only along the search direction iv . In other 

words, this optimal i  sets the next residual 1ir to zero along iv , i.e. 1 0T

i i v r . 

b) Using the “New Search Direction” stage, 1 1i i i i  v r v , briefly derive the expression for 

the optimal step length i  by enforcing A-conjugate search directions iv , i.e.  1 0T

i i v Av . 

c) With the result obtained in a), i.e. 1 0T

i i v r  (and thus 1 0T

i i v r  by recursion), and the 

results obtained in b), i.e. 1 0T

i i v Av  (and thus 1 0T

i i v Av  by recursion), utilize the “New 
Search Direction” stage, 1 1i i i i   v r v , and “New Residual” stage, 1i i i i  r r Av , to 

show that the successive residuals are orthogonal, i.e. 1 0T

i i r r . 

d) Building on c), one can show that each residual is orthogonal to all previous residuals, i.e. 
0,T

i k k i  r r  (no need to show this). If 
the matrix A is of size n, what can you 
then say about 1nr ? 

e) Using the above, very briefly explain why 
the last conjugate search direction 1nv  
points always to the minimum (regardless 
of the first direction 0v ). The figure on 
the right (which shows a conjugate 
gradient solution for a 2-by-2 linear 
system) could be useful. 
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C. Numerical Code Evaluations 
 
Problem V: Finite Difference Solution using MATLAB (20 points) 
Read the following MATLAB function and answer the questions that follow. 
 

function [phi] = PDE_Solve2(Lx, Ly, Nx, Ny, a, v, f, bcs_w, bcs_s, bcs_e) 

% INPUTS: 

%   Lx:         Size of domain along x,              size(Lx)   = 1 

%   Ly:         Size of domain along y,              size(Ly)   = 1 

%   Nx-1:       Number of interior nodes along x,    size(Nx)   = 1 

%   Ny:         Number of interior nodes along y,    size(Ny)   = 1 

%   a:          Equation parameter,                  size(a)    = 1 

%   v:          Equation parameter,                  size(v)    = 1 

%   f:          Function handle;                     Inputs: (x,y) 

%   bcs_w:      West boundary conditions,            size(bcs_w) = [Ny+1, 1] 

%   bcs_s:      South boundary conditions,           size(bcs_s) = [1, Nx-1] 

%   bcs_e:      East boundary conditions,            size(bcs_e) = [Ny+1, 1] 

  

Max_Iter = 2000; EPS = 1e-10; 

  

dx = Lx/Nx; 

dy = Ly/Ny; 

A = a/dx^2; 

V = v/dy; 

  

[X, Y] = meshgrid(0:dx:Lx, 0:dy:Ly); 

F = f(X, Y); 

  

% Set initial guess and boundary conditions. 

phi =  zeros(Ny+1, Nx+1); 

phi(:,1) = bcs_w; 

phi(:,end) = bcs_e; 

phi(1, 2:end-1) = bcs_s; 

  

% Initialize iteration 

Iter_Count = 0; 

Iter_Diff = 1e10; 

  

% Start iteration 

while (Iter_Count < Max_Iter)&&(Iter_Diff > EPS) 

    Iter_Diff = 0; 

    for i = 2 : Nx 

        for j = 2 : Ny+1 

            temp = (A*phi(j,i-1) + A*phi(j,i+1) + V*phi(j-1,i) + F(j,i))/(2*A+V); 

            if (abs(phi(j,i)-temp)>Iter_Diff) 

                Iter_Diff = abs(phi(j,i)-temp); 

            end; 

            phi(j,i) = temp; 

        end; 

    end; 

    Iter_Count = Iter_Count + 1; 

end;  

 

 
a) The code solves a PDE by a finite difference method. Please write down the PDE and its 

finite difference approximation at an interior node. 
b) What is the name of the linear solve algorithm being used to solve the linear system 

coming out of the discretization? 

®
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c) If we align the unknowns (values of   at interior nodes) in a column vector as 

 T
2,2 3,2 1,2 2,3 1,3 2, 1,, , , , , , , , , ,[ ]

y y x y xN N N N N             

(note that ,j i  here corresponds to “phi(j,i)” in the code), the A matrix of this linear 
system is also determined. Is A strictly diagonally dominant? If yes, please give a brief 
proof. If not, please specify which rows of A violate the strict diagonal dominance (Or 
you can specify which nodes correspond to rows of A that violate the strict diagonal 
dominance). 

d) How many nonzero diagonals does A have? What is the full bandwidth of A?  
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