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MASSACHUSETTS INSTITUTE OF TECHNOLOGY 
DEPARTMENT OF MECHANICAL ENGINEERING 

CAMBRIDGE, MASSACHUSETTS 02139 
2.29 NUMERICAL FLUID MECHANICS — SPRING 2015 

 
QUIZ 2                         Wednesday, April 15, 2015 

 
The goals of quiz 2 are to: (i) ask some general higher-level questions to ensure you understand broad concepts and 
are able to discuss such concepts and issues with others familiar with numerical fluid mechanics; (ii) show that you 
understand methods and schemes that you learned and that you can apply them in idealized computational problems; 
and (iii), evaluate if you can read numerical codes and recognize what they accomplish. Partial credit will be given 
to partial answers (e.g. accurate descriptions in words of computations required but not carried out). 
 
A. Shorter Concept Questions 
 
Problem I (24 points) 
Briefly answer 6 of the following 7 questions (a few words to a few sentences is enough, with or 
without equations depending on the question). If you answer 7 questions, we will give a bonus. 

a) Provide one reason why polynomial approximations are often used to derive finite-
difference/volume schemes. Provide another type of approximation that might be more 
adequate in specific cases and briefly state why. 
 

b) Using a Taylor series expansion, briefly explain when and why a non-uniform grid can be 
advantageous. 
 

c) You derive a discretization on a non-uniform grid and find that the truncation error is of a 
lower order than that on a uniform grid. What would be the advantage of selecting a non-
uniform grid progression such that when you refine the non-uniform grid, the grid tends 
towards a uniform one? 
 

d) Two of your friends compare their spatial FD discretization for the same PDE. Each tells 
you that her/his scheme is stable and of second order accuracy. What are two analyses that 
you can suggest to your friends to determine which of the two schemes is better? 

 
e) The von Neumann analysis tests the stability of a spatial discretization using Fourier series. 

Provide two reasons for this. 
 

f) Finite-volume schemes clearly involve integrals but why do they also involve 
interpolations? 
 

g) For three-dimensional problems in space, provide a major reason why it is challenging to 
obtain and utilize finite-volume methods of high-order (higher than 2)? 
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B. Computational Schemes and Idealized Computational Problems 
 
Problem II: Stability Analysis for a Parabolic Diffusion Equation in n-dimensions (14 points) 
 
Consider the n-dimensional heat conduction equation with a uniform thermal diffusivity, 
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We employ the following numerical discretization using a uniform grid spacing in the n-
dimensional space, i.e. x x    , 
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tr
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, the vector index j denotes a point in the n-dimensional space (e.g., j is a set of 

3 indices in 3-d), and [0, ,1, ,0]e   is a unit vector of indices (all zero except 1 in position ℓ). 

a) Using a von Neumann stability analysis, assuming a uniform modal decomposition in space 
(i.e. the variable β is chosen uniform and independent of ℓ), determine the stability criterion 
for the above discretization. 

 

b) Discuss your result in a) in terms of n. In particular, consider the cases n = 2 and n = 3.  

 

c) Briefly suggest how you could modify the given numerical discretization so as to relax the 
stiff stability condition obtained but without substantially increasing the computational cost. 
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Problem III: Analysis of Projection Methods in the Pressure-Correction Form (22 points) 
 
Consider the first two projection methods presented in class (see eqs. sheet), the so-called non-
incremental and incremental projection methods. For each of these schemes, the result of the first 
PDE solve, the predictor velocity *

iu , satisfies the boundary conditions (BCs) for velocity. For 

example, in the case of a no-slip Dirichlet condition at a wall,  
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First, consider the simplest non-incremental projection method: 

a) Explain how its third algebraic equation, the velocity correction, can be utilized to obtain 

the BC on the new pressure 1np  , i.e.
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b) Is this BC on 1np   physical? Briefly discuss (Hint: consider for example a viscous flow 
impinging on a wall). 

 

Next, consider the incremental projection method: 

c) Its BCs on the pressure correction,
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need to show this). What does this BC imply for the normal pressure gradient at the wall? 
Is it physical? 

d) Using the third equation of the incremental projection method, obtain and discuss the 
projection of the corrected velocity  

1n
iu 

along the wall, i.e. the tangential velocity 
component. 

e) Obtain a quick estimate of the order of “accuracy” of the difference    
11 * nn

i iu u 


 , a 
so-called splitting error. 

 

We now look into the cost of the linear system solves for projection methods. 

f) Consider any of the three projection schemes, what are the linear systems that it solves? 
You can define a matrix A and right-hand-side b for each system. 

g) Consider now a full implicit system solve for the Navier-Stokes eqs. (e.g. the Backward-
Euler Implicit in Time scheme, see eqs. sheet) or the same but with an explicit advection 
term. Compare the cost of solving either of these full systems to the cost of solving the 
systems in part f). (Hint: Drawing a block-matrix to represent a full system should help). 
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Problem IV: Compact Scheme for Finite Volume Methods (20 points) 
In finite volume methods, one step is to express flux variables at CV edges in terms of CV-
averaged values through interpolation. To obtain such an expression, we can use a parametric 
shape function approach, but we can also employ a Taylor expansion approach, as for finite 
differences. In this problem, we will use this Taylor expansion approach to obtain a compact 
system for the values of the field u at CV surfaces (cell vertex in 1D, edges in 2D, faces in 3D). 

 
Consider a uniform 1D mesh with spacing x  as sketched above. We set the origin of the local 
x axis at 0x . Therefore, the coordinate of a cell vertex is kx k x  . For a field u, we denote its 
cell-averaged value over cell kI  by ku  and its cell-vertex value at kx  by ku . To express the latter 
values in terms of the former averages, we employ the following compact scheme: 

1 0 1 0 1au u bu cu du           (1) 

where a , b , c  and d  are coefficients to be determined by the Taylor expansion approach. 
a) The Taylor expansion at 0 0x   of a cell-averaged value ku  is 
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and ( )
0
iu  is the i -th derivative of u  at 0x  (No need to derive this, but if you do, we will give a 

bonus). Using this result, fill out the following Taylor table for the compact scheme (1) 
(either here or in your answer book): 

 (0)
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0 ( )u x  (3) 3
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b) By setting to zero as many leading order terms of 1 0 1 1 1au u bu cu du      as possible, 

write down the linear system for the undetermined coefficients a , b , c  and d . The 
solution to this linear system is 

 1 1 3 3[ , , , ] [ , , , ]
4 4 4 4

a b c d   . 

Obtain the final compact scheme as well as the leading order term of the truncation error. 
Briefly explain how you would use this scheme to compute all cell-vertex values (fluxes) 
from all cell-average values. 
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c) For an equation with a diffusion term 2 2/u x  , to obtain a compact scheme, it may seem 
that we would need to utilize a Padé scheme to express the diffusive flux /u x   at cell 
vertices in terms of cell-averaged values ku . However, with the compact scheme we just 
derived, we can actually approximate /u x   at cell vertices by ku  without using a new 
Padé scheme. Could you briefly explain in words how this could be done? 

 
C. Numerical Code Evaluations 
 
Problem V: Finite Difference Solution using MATLAB (20 points) 
Read the following MATLAB function and answer the questions that follow. 
 
 

a = 1; L = 1; T = 1; 

  
dt = 5e-4; dx = 1e-3; 
A1 = 0.5*(1-a*dt/dx); 
A2 = 0.5*(1+a*dt/dx); 

  
u = sin(pi*(0:dx:L-dx)'); 

  
for i = 1 : round(T/dt) 
    u = [[u(2:end);u(1)],[u(end);u(1:end-1)]]*[A1;A2]; 
    if mod(i,10)==0, plot(0:dx:L-dx, u); pause(1e-9); end; 
end; 

 
a) Write down the PDE that is solved and the finite difference scheme that is used. 

 
b) What is the leading order term of the truncation error of this scheme? 

 
c) In the following sketch, the circles represent the nodes of the space-time grid. Please 

identify the numerical domain of dependence by filling the circles at which these node 
values can influence the value at the solid circle. What is the CFL criterion for this scheme? 
Please also sketch the physical domain of dependence for the solid circle when the CFL 
criterion is met. (Please sketch either here or on the answer book) 

 
 

d) Under what condition does this scheme satisfy boundedness and why? Boundedness means 
that the numerical solution at the next time step will never exceed the maximum (nor go 
below the minimum) of the solution at previous time steps. 

 

È



MIT OpenCourseWare
http://ocw.mit.edu

2.29 Numerical Fluid Mechanics
Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu/terms
http://ocw.mit.edu/



