
 

 

 

 

 

 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Name: 

2.57/2.570 Midterm Exam No. 1 

April 4, 2012 


11:00 am -12:30 pm 


Instructions: 

(1) 	 2.57 students: try all problems 
(2) 	 2.570 students: Problem 1 plus one of two long problems.  You can also do both long 

problems, and one will be considered for bonus points. 
(3) 	 Clearly state your assumptions. 
(4) 	 Closed book, one sheet of notes allowed. 

Unless otherwise noted, assume electron mass equals that of free electron in vacuum. 

Constants: 

Boltzmann constant k=1.38x10-23 J/K 

Electron charge e=1.6x10-19 C 

Free electron mass m=9.1x10-31 kg 

Planck constant h=6.6x10-34 J.s 

Proton mass M=1.67x10-27 kg 

Speed of light c=3x108 m/s
 

1. Answer the following short questions. Briefly explain your answer (60 Points) 
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Name: 

(1) (6 points) A bulk semiconductor has a direct band gap of 1 eV.  Both electrons and holes 
have the same effective mass that equals to free electron.  If the same semiconductor is made 
into a thin film of 5 nm, sandwiched between materials with an infinite barrier height, the first 
quantized energy level of conduction band will move up and that of the valence band will move 
down. What is the new bandgap of the thin film? 

Solution: 
Given: 
EG ,bulk 1eV 

me  mh  9.110-31 kg 

d  5 nm 

By sandwiching a thin-film semiconductor between two materials with an infinite barrier height, 
a 1D quantum well is created. Due to quantization effects, the density of states (recall Example 
3.5) will only be nonzero after the first energy level is excited. Therefore, the new bandgap of 
the thin film can be formulated as, 

E  E  2  EG , film G ,bulk 1 

where, the first energy level for the electrons and holes are assumed equal since the effective 
masses are equal. For a quantum well, the energy levels are, 

1 nh 
2 

 En           (2.42)  
2m  2D  

The first energy level is therefore, 

1   10 J s2
1 1 6.636 34 eV

E      0.0151eV1 31  9 1929.110 kg 2510 m 1.60210 J  
Thus, 

EG , film  1  2  0.0151  1.0302 eV 
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(2) (6 points) Typical thermal conductivity of gas changes with Tn. Make your best estimate 
of the value of n and justify your value. 

Solution: 
In general we can formulate the thermal conductivity of a gas as follows, 

C
k          (1.35)  

3 
Each term has its own temperature dependence. Assuming an ideal monatomic gas, the 
volumetric specific heat, C, is 

3kb N 3P 1
C   ~        (4.29 & 4.47) 

2V 2T T 
The average speed of the molecules, v, is, 

T 
m 

Tkb ~ 
8

        (p.24)  

And finally the mean free path,  , using a simple kinetic model is, 
kbT  ~ T        (1.38)  

 2Pd 2 

Therefore, 
1

k ~  T T  T
T 

Thus, 
1 

n  
2 
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(3) Light at 1 m wavelength is incident from vacuum towards a semi-infinite medium of 
refractive index N=2+0.01i at normal incidence.  Answer the following two questions: 

(3a) (6 points) What is the percentage that the light is absorbed by the medium.  

(3b) (6 points) What is the skin depth, i.e., the distance when light intensity drop to e-1 inside 
the medium.  

Solution: 
Given: 
  1μm 

N1  1 

N2  2  0.01i 

 i  0o 

(a) Since the media is semi-infinite, the absorptivity is equal to the transmissivity. From the 
Fresnel coefficients, 

2N1 2 1
t    0.6667  0.00222i    (5.72 & 5.74) 

N1  N2 1 2  0.01i 
Thus, 

*ReN  2 Re2  0.01i  2 
* 

t 0.6667  0.00222i 
2 
 0.8889 

ReN1 
 

Re 1   

(b) The skin depth of the material is defined as the inverse of the absorption coefficient, 
1  1106 m     7.96 μm       (5.40)  
 4 4 0.01 
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(4) Light with TM polarization at 1 m wavelength is incident from a semi-infinite medium 
of refractive index N=2 towards an interface. Answer the following two questions: 

(4a) (6 points) What is the critical angle of incidence.  

(4b) (6 points) For an angle of incidence at 60o, total internal reflection happens.  How far 
does the electric field penetrate into the vacuum side, i.e., find the distance when the electric 
field drops to e-1 of its value at the interface (at the vacuum side).  

Solution: 
Given: 
  1μm 

N1  2 

N2 1 
TM polarization 

(a) The critical angle is, 

1  N  1 1  oc  sin	  
2 
  sin    30      (5.80)  

 N1   2  

(b) The penetration depth for an evanescent TM wave is, 
 1106 m 

 112.5 nm	 (5.145)   
2N2 cos t 2 o	 

2 

2  1 1 
 

sin60  
 1  
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(5) (6 points) An atom has two nondegenerate electronic quantum states with energy at E1=­
1.0 eV and E2 = -0.97 eV from the vacuum level. At room temperature, the average number of 
electron count in each atom at the E1 level is 0.5. What is the average number of electron count 
at the E2 level. 

Solution: 
Given: 
T  300 K 
E1  1.0 eV 

E2  0.97 eV 

n  0.51 

To determine the average number of electrons for the E2 level, the chemical potential must first 

be found using the information given for the E  level,1

1n    
1exp 

1 
,, 

1 
  
 

 
 
 

  
 

k T 

E 
f E T 

b 

 
 

Thus, 

0.5  
 1.0 eV 

1 

   
 1.0 eV  

 1
exp


23 
1.3810 J/K300 K 

Therefore, 
1 

n   0.2392   0.97 eV  1.0 eV 19 J  
exp 1.602 10   1 


23 

1.38 10 J/K300 K eV 
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(6) (6 points) At 300K and 105 Pa, what is the average number of helium atoms per unit 
volume and per unit speed interval with a speed at 1000 m/s? 

Solution: 
Given: 
T  300 K 
P  105 Pa 
v  1000 m/s 
m  4  mp  6.681027 kg 

The average number of atoms traveling at a speed of 1000 m/s can be determined by the product 
of the total atom density and the Maxwell speed distribution, 

N N    f v
V v V 

To determine the total atom density, the ideal gas law can be used, 
5N P 10 Pa 25 #

   2.41510 (4.29)23 3V kbT 1.3810 J/K300 K m 
The Maxwell speed distribution is the Maxwell distribution integrated over the solid angle, 

3
 

 m  2  mv2 
   4   
2 

v exp       (p.24)  f v  
2k T 2k T b   b  

27 27 2 6.6810 kg  
3

2  6.6810 kg1000 m/s    4  23  
2 

  exp 23  

f v  1000 m/s  

 2 1.3810 J/K300 K 21.3810 J/K300 K  

 s 
f   v 0.00073 m  

Thus, 
N  25 #  22 # s

 2.41510 
3   0.00073  1.7629 10 

3 


V v  m  m m 
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(7) (6 points) Copper has an fcc lattice with a lattice constant of 3.61 Å (one Cu atom per 
lattice point). What is the lattice specific heat per unit volume at high temperatures.  

Solution: 
Given: 
a  3.61Å 
FCC lattice 

For an FCC lattice, the number of units per unit cell is equal to N  4 . At high temperature, the 
lattice specific heat will take the following form, 

N
Cv  3kb        (4.46)  

V 
This is due to 2 degrees of freedom in each coordinate direction (potential energy of the atom 
bonds and the kinetic energy of the atoms). Based on the given information, 

23 4 6 J
C  31.38 10 J/K  3.52 10v 3 3-103.6110 m m K 
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 22 
yx kk  ,(8) (6 points) Electrons in a graphene sheet has a linear dispersion relation E  c 

where 

, kk yx  
2 
L 

, 
4 
L a 

,...., 
 

(a the lattice constant). What is the density of states of electrons per 

unit energy interval and per unit area? 

Solution: 
Given: 

E  ck  ; where k  kx 
2  ky 

2 

The density of states in k space for this 2D system is, 
2kdk 1 k   2 

2 
 

2 
D k   

 2  L dk  
  
 L  

To convert to per unit energy interval, the following can be used, 
dk E 1 E        D E D k 
dE c c c2 
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Long Problems: 

2. (20 points) Interband Absorption of Photons. A direct semiconductor has the following 
dispersions for the conduction and the valence bands, 

2 2 2 2 k  k  k x y zEc  EG  (for conduction band)

2mc
 

2 2 2 2 k  k  k x y zEv   (for valence band)

2mv
 

2 4 
where k , k , k   , ,...., ; EG is the bandgap, and mc and mv are the effective masses x y z L L a 
of the conduction and the valence band, respectively.  Consider the interband absorption process 
in which a photon is absorbed, lifting an electron from the valence band to the conduction band. 
Because photons have very small momentum, we can approximate the absorption as a vertical 
process, i.e., no momentum change.  The absorbed photon energy, Ep, should equal to the energy 
difference of the electrons and holes at the same wavevector, Ec-Ev. The absorption coefficient 
of the semiconductor, , is proportional to the density of states available for such as transition. 
Show that the absorption coefficient varies as 

Gp EE  

Solution: 
Given: 

The energy dispersions given are: 


2 2k 2 2 2 2E  E  ; k  k  k  kc G x y z2mc 

2k 2 

Ev   
2mv 

As given in the problem, the energy of an absorbed photon will equal to the energy difference 
between electrons and holes at the same wave vector k. Based on this information, the energy 
dispersion of this absorbed photon will be, 

2 2 2 2 k  k
E  E  E  E  p c v G 2mc 2mv 

Or, 

 2  1 1  2 2Ep  EG    k  Ck
2 m m c v  
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where, 

2  1 1 
C     2 m m c v  

Note that the energy dispersion relations given in the problem are taken with respect to the top of 
the valence band. However, the transition is defined with respect to Ev . By defining the energy 

dispersion in this form, the reference point is automatically changed. To prove that the 
absorption coefficient is proportional to the square root of energy, the density of states for this 
system must be determined. Starting in k space for a 3D system, 

4k 2dk 1 k 2 

   2 D k  
3 3 2

 2  L dk 
 
 
 
 L  

Once again, this can be written per unit energy interval by, 

D k 
dk Ep  EG  1 1

D E       
dE C 2 2 

3
 

   
C 2

2 
 Ep  EGD E 

2 
Therefore, 

Gp EEC  

  p  EG  D E E 
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3.  (20 points) Phonon Peak Energy in a Debye Crystal.  A Debye crystal at temperature T has 
the following dispersion relation 

2 2 2 2v D  v k  v k  k  k D D x y z  

2 4 
where kx , k y , kz   , ,...., , vD (=3000 m/s) is the Debye velocity, and aD (=2 Å) is the

L L a D 

equivalent lattice constant of the Debye crystal. Answer the following questions 

(a)	 (5 points) Derive an expression for the phonon density of states per unit volume and per 
wavelength interval. 

(b) (5 points) Derive an expression for the internal energy per unit volume and per unit 
wavelength interval, u. 

(c) (5 points) Derive a corresponding Wien’s law for phonons, i.e., determine the phonon 
wavelength at which the internal energy u peaks. 

(d) (5 points) Based on the answer for (c) and the shortest physically allowed phonon 
wavelength in the crystal, determine the wavelength at which u peaks at 10 K and 300 
K. 

Solution: 
Given: 

2  v k  vD D  
vD  3000 m/s 

a D  2 Å 

(a) The density of states can once again be derived starting in k space, 
4k 2dk 1 3k 2 

   3 D k  
3	 3 2

 2  L dk 2
 
 
 
 L  

To convert to per wavelength interval, 

dk 3 2 
2 

2
  	     D D k      

2d 2 2    

12
D   

4 

(b) The internal energy of phonons per unit volume per unit and per unit wavelength interval can 
be written as, 

   f E     ,T  D u  E 	  
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Thus, 
 2vD  1 12 

u       
     2vD  4 

exp   1 
k T  b  

24 2v 
u  D 
   2v 1  

5 exp 
D   1 kb T    

If the following constants are defined, 
C1  24 2vD 

2v
C2  

kb 

D 

The expression for the internal energy becomes, 

C 
u  1 

  C  
5 
exp 2  1T    

(c) To derive a Wien’s law for phonons, the peak position in the internal energy must be found as 
a function of wavelength. Therefore, the expression for the internal energy from (b) must be 
differentiated and a critical point must be found, 

d 

du 

 
  1 

 
 
 
 
 

 

 

C 

exp 

5 

26 

 
 

 
 
 
 

T 

C 


 1 

 


  
 
 

 

1exp 

exp 

2 

25 

2 
22 

 
 

 
 
 

 
  
 


 
 
 

  
 


 
 
 

T 

C 

T 

C 

T 

C 


 

 

 
 
 
 
 

 

 

 0 

Simplifying leads to,
  

exp 
5 2 

2 
 
 

 
 
 
 

T 

C 

C 

T 

 
 

exp1 2 
 
 

  
 


  
 
 

T 

C 

 
0  

 
 

Defining x T  , the expression becomes, 
5 

2C 

x 
exp 2
 
 

 
 
 
 

x 

C 
exp1 2 

 
 

  
 


  
 
 

x 

C 
0  

 
 

To solve for x, the expression must either be iterated or graphically solved. Based on the given 
information, 

C2  1.4426 107 K  m 
Using either method will lead to, 

x  T  0.029 μm  K 

Alternatively, this value can be deduced by observing that the only difference between this 
particular case and the photon case is the speed of the particle, i.e. Debye velocity vs. speed of 
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light. Since the Debye velocity is 105  smaller, the corresponding Wien’s law should also be 105 

smaller compared to the photon case.  

(d) For phonons, the wave vector k is limited by the discrete nature of the crystal lattice. 
Specifically, 


kmax 
 

a
 
In terms of wavelength, 

2 
k      2a  4Åmax min
min a
 

For T1  10 K , 
0.029 μm  K1   2.91nm 

10 K 
Since    , the peak given by the phonon Wien’s law is observable. 1 min 

For T2  300 K , 
0.029 μm  K2   0.967 Å 

300 K 
In this case, 2  min . Therefore the peak value in the internal energy will occur at min , 

    4 Å2 min 

14
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