MIT OpenCourseWare http://ocw.mit.edu

2.61 Internal Combustion Engines Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

2.61 Internal Combustion Engines Lecture 1

Engines

- -There are two types of engines:
 - 1. Internal combustion combustion occurs in the working fluid
 - open cycle the working fluid is replenished in each cycle
 - ie) exhaust gas is dumped into the atmosphere
 - 2. External combustion use of heat exchanger to transfer energy to the working fluid
 - Open or closed cycle
 - Ex) steam engine, sterling engine

<u>History</u>

- 1860 Lenoir engine
 - air and fuel were hand pumped
 - -"spark," or ignition was a candle / kerosene lamp →done all by hand
 - operated at about 10 RPM
 - 500 sold
 - 2 stroke
 - -ignition occurs while still in the expansion stage
 - →limited expansion ratio
 - → low efficiency (<5%)

(Graph: Lenoir and Otto engine shown, dashed portion shows Otto expansion)

- 1867 Otto engine (Nicholas Otto, Germany)
 - used a rack and pinion flywheel as a crank
 - -efficiency was better than Lenoir (~11%)
 - 4 stroke
- 1892 Diesel engine (Rudolf Diesel, Germany)

Other Developments

1870 – Petroleum industry

1888 - Pneumatic tires

1905 - Spark plugs (Champion)

1920 – Internal Combustion Engine (ICE) takes over steam engine for transportation

- main advantage - don't need to carry around water

1920-1960 - steady development

1960 - Emission standards start

Heagen Smith - smog mechanism

1970 - Fuel crisis

1980 – Global competition

1990 – Greenhouse gases

2000 - Fuel and CO2

4 stroke engine

2 Stroke engine

Engine Size

- -Piston bore ranges from 1 cm to 1m (large diesels)
- -heat loss and friction are surface phenomenon → bigger engine, less losses

Engine Geometry

Crank radius - a

Connecting rod length - I

 $\mbox{ Displacement volume - } V_d = \frac{\pi B^2}{4} l$

Compression ratio (geometric) - $C_{R} = \frac{V_{D} + V_{C}}{V_{c}}$

Piston position - $s(\theta) = a\cos\theta + \sqrt{l^2 + a^2\sin^2\theta}$

Instantaneous volume - $V(\theta) = V_C + \frac{\pi B^2}{4}S$

$$\frac{V}{V_C} = 1 + \frac{1}{2}(C_R - 1)[R + 1 - \cos\theta - (R^2 - \sin^2\theta)^{0.5}]$$

Piston velocity

$$\dot{s}(\theta) = \left[-\sin\theta - \frac{\sin^2\theta}{2(R^2 - \sin^2\theta)^{0.5}} \right] a\dot{\theta}$$

where $\theta = 2\pi N$ and N=RPM

Mean piston speed

$$S_p = 2NL$$

-typical numbers for engines

-L/B (stroke/bore) ~ 1 for passenger cars

-L/B ~0.2 for racing engines

-L/B ~ 2 for large engines

-R = I/a is 3~4 for typical passenger cars

Pressures - normally aspirated 4 stroke SI

Heat release - normally aspirated 4 stroke SI

Pressure - normally aspirated 4-stroke Diesel

