MIT OpenCourseWare http://ocw.mit.edu

2.61 Internal Combustion Engines Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Engine Heat Transfer

- 1. Impact of heat transfer on engine operation
- 2. Heat transfer environment
- 3. Energy flow in an engine
- 4. Engine heat transfer
 - > Fundamentals
 - Spark-ignition engine heat transfer
 - Diesel engine heat transfer
- 5. Component temperature and heat flow

Engine Heat Transfer

- Heat transfer is a parasitic process that contributes to a loss in fuel conversion efficiency
- The process is a "surface" effect
- Relative importance reduces with:
 - Larger engine displacement
 - Higher load

Engine Heat Transfer: Impact

- Efficiency and Power: Heat transfer in the inlet decrease volumetric efficiency. In the cylinder, heat losses to the wall is a loss of availability.
- Exhaust temperature: Heat losses to exhaust influence the turbocharger performance. In-cylinder and exhaust system heat transfer has impact on catalyst light up.
- **Friction**: Heat transfer governs liner, piston/ ring, and oil temperatures. It also affects piston and bore distortion. All of these effects influence friction. Thermal loading determined fan, oil and water cooler capacities and pumping power.
- Component design: The operating temperatures of critical engine components affects their durability; e.g. via mechanical stress, lubricant behavior

Engine Heat Transfer: Impact

- Mixture preparation in SI engines: Heat transfer to the fuel significantly affect fuel evaporation and cold start calibration
- Cold start of diesel engines: The compression ratio of diesel engines are often governed by cold start requirement
- SI engine octane requirement: Heat transfer influences inlet mixture temperature, chamber, cylinder head, liner, piston and valve temperatures, and therefore end-gas temperatures, which affect knock. Heat transfer also affects build up of in-cylinder deposit which affects knock.

Engine heat transfer environment

- Gas temperature: ~300 3000°K
- Heat flux to wall: Q/A <0 (during intake) to 10 MW/m²
- Materials limit:
 - Cast iron ~ 400°C
 - Aluminum ~ 300°C
 - Liner (oil film) ~200°C
- Hottest components
 - Spark plug > Exhaust valve > Piston crown > Head
 - Liner is relatively cool because of limited exposure to burned gas
- Source
 - Hot burned gas
 - Radiation from particles in diesel engines

Energy flow diagram for an IC engine

Image removed due to copyright restrictions. Please see: Fig. 12-3 in Heywood, John B. *Internal Combustion Engine Fundamentals*. New York, NY: McGraw-Hill, 1988.

Energy flow distribution for SI and Diesel

Image removed due to copyright restrictions. Please see Table 12-1 in Heywood, John B. *Internal Combustion Engine Fundamentals*. New York, NY: McGraw-Hill, 1988.

Energy distribution in SI engine

Images removed due to copyright restrictions. Please see: Fig. 12-4 in Heywood, John B. *Internal Combustion Engine Fundamentals*. New York, NY: McGraw-Hill, 1988.

Heat transfer process in engines

Areas where heat transfer is important

- Intake system: manifold, port, valves
- In-cylinder: cylinder head, piston, valves, liner
- Exhaust system: valves, port, manifold, exhaust pipe
- Coolant system: head, block, radiator
- Oil system: head, piston, crank, oil cooler, sump

Information of interest

- Heat transfer per unit time (rate)
- Heat transfer per cycle (often normalized by fuel heating value)
- Variation with time and location of heat flux (heat transfer rate per unit area)

Schematic of temperature distribution and heat flow across the combustion chamber wall (Fig. 12-1)

Image removed due to copyright restrictions. Please see: Fig. 12-1 in Heywood, John B. *Internal Combustion Engine Fundamentals*. New York, NY: McGraw-Hill, 1988.

Combustion Chamber Heat Transfer

Turbulent convection: hot gas to wall

$$\dot{Q} = Ah_g(\overline{T}_g - T_{wg})$$

Conduction through wall

$$\dot{Q} = A \frac{\kappa}{t_w} (T_{wg} - T_{wc})$$

Turbulent convection: wall to coolant

$$\dot{Q} = Ah_C(T_{WC} - \overline{T}_C)$$

Overall heat transfer

$$\dot{Q} = Ah(\overline{T}_g - \overline{T}_c)$$

Overall thermal resistance: three resistance in series

$$\frac{1}{h} = \frac{1}{h_g} + \frac{t_w}{\kappa} + \frac{1}{h_c}$$

$$(\kappa_{alum} \sim 180 \text{ W/m-k})$$

$$\kappa_{cast iron} \sim 60 \text{ W/m-k}$$

$$\kappa_{stainless steel} \sim 18 \text{ W/m-k})$$

Turbulent Convective Heat Transfer Correlation

Approach: Use Nusselt- Reynolds number correlations similar to those for turbulent pipe or flat plate flows.

e.g. In-cylinder:

Nu =
$$\frac{hL}{\kappa}$$
 = a(Re) 0.8

h = Heat transfer coefficient

L = Characteristic length (e.g. bore)

Re= Reynolds number, $\rho UL/\mu$

U = Characteristic gas velocity

 κ = Gas thermal conductivity

μ = Gas viscosity

 ρ = Gas density

a = Turbulent pipe flow correlation coefficient

Radiative Heat Transfer

- Important in diesels due to presence of hot radiating particles (particulate matters) in the flame
- Radiation from hot gas relatively small

$$\dot{Q}_{rad} = \epsilon \cdot \sigma \cdot \mathsf{T}_{particle}^4$$

 σ = Stefan Boltzman Constant (5.67x10⁻⁸ W/m²-K⁴) ε = Emissivity where

$$T_{cyl. ave} < T_{particle} < T_{max burned gas}$$

• Radiation spectrum peaks at λ_{max} λ_{max} T = constant (λ_{max} = 3 μ m at 1000K)

Typically, in diesels:
$$\overline{Q}_{rad} \approx 0.2 \overline{Q}_{total}$$
 (cycle cum) $\dot{Q}_{rad,\,max} \approx 0.4 \dot{Q}_{total,\,max}$ (peak value)

$$\dot{Q}_{rad,max} \approx 0.4 \dot{Q}_{total,max}$$
 (peak value)

IC Engine heat transfer

- Heat transfer mostly from hot burned gas
 - That from unburned gas is relatively small
 - Flame geometry and charge motion/turbulence level affects heat transfer rate
- Order of Magnitude
 - SI engine peak heat flux ~ 1-3 MW/m²
 - Diesel engine peak heat flux ~ 10 MW/m²
- For SI engine at part load, a reduction in heat losses by 10% results in an improvement in fuel consumption by 3%
 - Effect substantially less at high load

SI Engine Heat Transfer

Figure by MIT OpenCourseWare.

- Heat transfer dominated by that from the hot burned gas
- Burned gas wetted area determine by cylinder/ flame geometry
- Gas motion (swirl/ tumble) affects heat transfer coefficient

Heat transfer

Burned zone: sum over area "wetted" by burned gas

$$\dot{Q}_{b} = \sum_{i} A_{ci,b} h_{b} (T_{b} - T_{w,i})$$

Unburned zone: sum over area "wetted" by unburned gas

$$\dot{Q}_u = \sum_i A_{ci,u} h_u (T_u - T_{w,i})$$

Note: Burned zone heat flux >> unburned zone heat flux

SI engine heat transfer environment

Image removed due to copyright restrictions. Please see Fig. 14-9 in Heywood, John B. *Internal Combustion Engine Fundamentals*. New York, NY: McGraw-Hill, 1988.

Fig. 14-9 5.7 L displacement, 8 cylinder engine at WOT, 2500 rpm; fuel equivalence ratio 1.1; GIMEP 918 kPa; specific fuel consumption 24 g/kW-hr.

SI engine heat flux

Images removed due to copyright restrictions. Please see: Gilaber, P., and P. Pinchon. "Measurements and Multidimensional Modeling of Gas-wall Heat Transfer in a S.I. Engine." *SAE Journal of Engines* 97 (February 1988): 880516.

Heat transfer scaling

Image removed due to copyright restrictions. Please see: Fig. 12-25 in Heywood, John B. *Internal Combustion Engine Fundamentals*. New York, NY: McGraw-Hill, 1988.

Nu correlation: heat transfer rate $\propto \rho^{0.8} N^{0.8}$ Time available (per cycle) $\propto 1/N$ Fuel energy $\propto \rho$ BMEP $\propto \rho$

Thus Heat Transfer/Fuel energy ∞ BMEP-0.2N-0.2

Diesel engine heat transfer

Image removed due to copyright restrictions. Please see Fig. 12-13 in Heywood, John B. *Internal Combustion Engine Fundamentals*. New York, NY: McGraw-Hill, 1988.

Fig. 12-13 Measured surface heat fluxes at different locations in cylinder head and liner of naturally aspirated 4-stroke DI diesel engine. Bore=stroke=114mm; 2000 rpm; overall fuel equivalence ratio = 0.45.

Diesel engine radiative heat transfer

Image removed due to copyright restrictions. Please see: Fig. 12-15 in Heywood, John B. *Internal Combustion Engine Fundamentals*. New York, NY: McGraw-Hill, 1988.

Fig. 12-15
Radiant heat flux as fraction of total heat flux over the load range of several different diesel engines

Heat transfer effect on component temperatures Temperature distribution in head

Image removed due to copyright restrictions. Please see Fig. 12-20 in Heywood, John B. *Internal Combustion Engine Fundamentals*. New York, NY: McGraw-Hill, 1988.

Fig. 12-20 Variation of cylinder head temperature with measurement location n SI engine operating at 2000 rpm, WOT, with coolant water at 95°C and 2 atmosphere.

Heat transfer paths from piston

Image removed due to copyright restrictions. Please see: Fig. 12-24 in Heywood, John B. *Internal Combustion Engine Fundamentals*. New York, NY: McGraw-Hill, 1988.

Fig. 12-24 Heat outflow form various zones of piston as percentage of heat flow in from combustion chamber. High-speed DI diesel engine, 125 mm bore, 110 mm stroke, CR=17

Piston Temperature Distribution

Image removed due to copyright restrictions. Please see Fig. 12-19 in Heywood, John B. *Internal Combustion Engine Fundamentals*. New York, NY: McGraw-Hill, 1988.

Figure 12-19

Isothermal contours (solid lines) and heat flow paths (dashed lines) determined from measured temperature distribution in piston of high speed DI diesel engine. Bore 125 mm, stroke 110 mm, r_c =17, 3000 rev/min, and full load

Thermal stress

Simple 1D example : column constrained at ends

Stress-strain relationship

$$\varepsilon_x = [\sigma_x - v(\sigma_y + \sigma_z)]/E + \alpha(T_2 - T_1)$$

T₂>T₁ induces compression stress

REAL APPLICATION - FINITE ELEMENT ANALYSIS

- Complicated 3D geometry
- Solution to heat flow to get temperature distribution
- Compatibility condition for each element

Example of Thermal Stress Analysis:Piston Design

Heat Transfer Analysis

Images removed due to copyright restrictions. Please see Castleman, Jeffrey L. "Power Cylinder Design Variables and Their Effects on Piston Combustion Bowl Edge Stresses." *SAE Journal of Engines* 102 (September 1993): 932491.

Thermal-Stress-Only Loading Structural Analysis

Power Cylinder Design Variables and Their Effects on Piston Combustion Bowl Edge Stresses

J. Castleman, SAE 932491

Heat Transfer Summary

- 1. Magnitude of heat transfer from the burned gas much greater than in any phase of cycle
- 2. Heat transfer is a significant performance loss and affects engine operation
 - Loss of available energy
 - Volumetric efficiency loss
 - Effect on knock in SI engine
 - ➤ Effect on mixture preparation in SI engine cold start
 - Effect on diesel engine cold start
- 3. Convective heat transfer depends on gas temperature, heat transfer coefficient, which depends on charge motion, and transfer area, which depends on flame/combustion chamber geometry
- 4. Radiative heat transfer is smaller than convective one, and it is only significant in diesel engines