MIT OpenCourseWare http://ocw.mit.edu

2.61 Internal Combustion Engines Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Engine Friction and Lubrication

Engine friction

- terminology
- Pumping loss
- Rubbing friction loss

Engine Friction: terminology

- Pumping work: W_p
 - Work per cycle to move the working fluid through the engine
- Rubbing friction work: W_{rf}
- Accessory work: W_a

Total Friction work: $W_{tf} = W_p + W_{rf} + W_a$

Normalized by cylinder displacement → MEP

– tfmep = pmep + rfmep + amep

Net output of engine

- bmep = imep(g) - tfmep

Mechanical efficiency

 $-\eta_m = bmep / imep(g)$

Friction components

1. Crankshaft friction

- Main bearings, front and rear bearing oil seals
- 2. Reciprocating friction
 - Connecting rod bearings, piston assembly
- 3. Valve train
 - Camshafts, cam followers, valve actuation mechanisms
- 4. Auxiliary components
 - Oil, water and fuel pumps, alternator
- 5. Pumping loss
 - Gas exchange system (air filter, intake, throttle, valves, exhaust pipes, after-treatment device, muffler)
 - Engine fluid flow (coolant, oil)

Engine Friction

Image removed due to copyright restrictions. Please see: Fig. 13-1 in Heywood, John B. *Internal Combustion Engine Fundamentals*. New York, NY: McGraw-Hill, 1988.

Fig. 13-1

Comparison of major categories of friction losess: fmep at different loads and speeds for 1.6 L four-cylinder overhead-cam automotive Spark Ignition (SI) and Compression-Ignition (CI) engines.

Pumping loss

Image removed due to copyright restrictions. Please see: Fig. 13-15 in Heywood, John B. *Internal Combustion Engine Fundamentals*. New York, NY: McGraw-Hill, 1988.

Fig. 13-15 Puming loop diagram for SI engine under firing conditions, showing throttling work $V_d(p_e-p_i)$, and valve flow work

Sliding friction mechanism

Image removed due to copyright restrictions. Please see: Fig. 13-4 in Heywood, John B. *Internal Combustion Engine Fundamentals*. New York, NY: McGraw-Hill, 1988.

Energy dissipation processes:

- Detaching chemical binding between surfaces
- Breakage of mechanical interference (wear)

Bearing Lubrication

Image removed due to copyright restrictions. Please see: Fig. 13-2 in Heywood, John B. *Internal Combustion Engine Fundamentals*. New York, NY: McGraw-Hill, 1988.

Stribeck Diagram for journal bearing

Image removed due to copyright restrictions. Please see: Fig. 13-3 in Heywood, John B. *Internal Combustion Engine Fundamentals*. New York, NY: McGraw-Hill, 1988.

Motoring break-down analysis

Image removed due to copyright restrictions. Please see: Fig. 13-14 in Heywood, John B. *Internal Combustion Engine Fundamentals*. New York, NY: McGraw-Hill, 1988.

Fig. 13-14

Motored fmep versus engine speed for engine breakdown tests.

- (a) Four-cylinder SI engine.
- (b) Average results for several four- and six-cylinder DI diesel engines

Breakdown of engine mechanical friction

Figure by MIT OpenCourseWare.

- 1 F.A. Martin, "Friction in Internal Combustion Engines," I.Mech.E. Paper C67/85, Combustion Engines Friction and Wear, pp.1-17,1985.
 - T. Hisatomi and H. Iida, "Nissan Motor Company's New 2.0 L. Four-cylinder Gasoline Engine," SAE Trans. Vol. 91, pp. 369-383, 1982; 1st engine.

 2nd engine.
 - M. Hoshi, "Reducing Friction Losses in Automobile Engines," Tribology International, Vol. 17, pp 185-189, Aug. 1984.
 - J.T. Kovach, E.A. Tsakiris, and L.T. Wong, "Engine Friction Reduction for Improved Fuel Economy," SAE Trans. Vol. 91, pp. 1-13, 1982

Valve train friction

Image removed due to copyright restrictions. Please see illustrations of "Valve Timing-gear Designs." In the *Bosch Automotive Handbook*. London, England: John Wiley & Sons, 2004.

Valve train friction depends on:

- Total contact areas
- Stress on contact areas
 - **≻**Spring and inertia loads

Low friction valve train

Image removed due to copyright restrictions. Please see: Fig. 13-25 in Heywood, John B. *Internal Combustion Engine Fundamentals*. New York, NY: McGraw-Hill, 1988.

Valve train friction reduction

"Friction loss reduction by new lighter valve train system," JSAE Review 18 (1977), Fukuoka, Hara, Mori, and Ohtsubo

Piston ring pack

Image removed due to copyright restrictions. Please see: Fig. 13-17 in Heywood, John B. *Internal Combustion Engine Fundamentals*. New York, NY: McGraw-Hill, 1988.

Hydrodynamic lubrication of the piston ring

Image removed due to copyright restrictions. Please see: Fig. 13-18 in Heywood, John B. *Internal Combustion Engine Fundamentals*. New York, NY: McGraw-Hill, 1988.

Friction force and associated power loss

Figure by MIT OpenCourseWare.

Piston slap

Figure by MIT OpenCourseWare.

Bore distortion

Lubricants

- Viscosity is a strong function of temperature
- Multi-grade oils (introduced in the 1950's)
 - Temperature sensitive polymers to stabilize viscosity at high temperatures
 - ➤ Cold: polymers coiled and inactive
 - ➤ Hot: polymers uncoiled and tangle-up: suppress high temperature thinning
- Stress sensitivity: viscosity is a function of strain rate

Viscosity

Image removed due to copyright restrictions. Please see: Linna, Jan-Roger, et al. "Contribution of Oil Layer Mechanism to the Hydrocarbon Emissions from Spark-ignition Engines." *SAE Journal of Fuels and Lubricants* 106 (October 1997): 972892.

Modeling of engine friction

- Overall engine friction model:
 - tfmep (bar) = fn (rpm, V_d , v, B, S,)
 - See text, ch. 13, ref.6; SAE 900223, ...)
- Detailed model

$$tfmep = \sum (fmep)_{components}$$

With detailed modeling of component friction as a function of rpm, load, ...

FMEP distribution

Image removed due to copyright restrictions. Please see: Patton, Kenneth J., et al. "Development and Evaluation of a Friction Model for Spark-ignition Engines." *SAE Journal of Engines* 98 (February 1989): 890836.

Distribution of FMEP for a 2.0L I-4 engine; B/S = 1.0, SOHC-rocker arm, flat follower, 9.0 compression ratio

C = crankshaft and seals

R = reciprocating components

V = valve train components

A = Auxiliary components

P = Pumping loss