MIT OpenCourseWare http://ocw.mit.edu

2.61 Internal Combustion Engines Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Engine Turbo/Super Charging

Super and Turbo-charging

Why super/ turbo-charging?

Fuel burned per cycle in an IC engine is air limited

$$- (F/A)_{stoich} = 1/14.6$$

$$Torq = \frac{\eta_f m_f Q_{HV}}{2\pi n_R}$$

Power = Torq $\cdot 2\pi N$

$$m_f = (F_A)_{\eta V \rho_{a,0}} V_D$$

 η_f, η_v fuel conversion and volumetric efficiencies

 $m_{f}\,$ – fuel mass per cycle

Q_{HV}– fuel heating value

n_R - 1 for 2-stroke, 2 for 4-stroke engine

N - revolution per second

V_D – engine displacement

 $\rho_{a,0}$ – air density

Super/turbo-charging: increase air density

Super- and Turbo- Charging

Purpose: To increase the charge density

- Supercharge: compressor powered by engine output
 - No turbo-lag
 - Does not impact exhaust treatment
 - Fuel consumption penalty
- Turbo-charge: compressor powered by exhaust turbine
 - Uses 'wasted' exhaust energy
 - Turbo- lag problem
 - Affects exhaust treatment
- Intercooler
 - Increase charge density (hence output power) by cooling the charge
 - Lowers NO_x emissions

Charge-air pressure regulation with wastegate on exhaust gas end. 1. Engine, 2. Exhaust-gas turbochager, 3. Wastegate

Exhaust-gas turbocharger for trucks
1.Compressor housing, 2. Compressor impeller, 3. Turbine housing, 4. Rotor, 5.

Bearing housing, 6. inflowing exhaust gas, 7. Out-flowing exhaust gas, 8. Atmospheric fresh air, 9. Pre-compressed fresh air, 10. Oil inlet, 11. Oil return

Images removed due to copyright restrictions. Please see illustrations of "Charge-air Pressure Regulation with Wastegate on Exhaust Gas End", and "Exhaust-gas Turbocharger for Trucks." In the *Bosch Automotive Handbook*. London, England: John Wiley & Sons, 2004.

From Bosch Automotive Handbook

Compressor: basic thermodynamics

Compressor efficiency η_c

$$\eta_{c} = \frac{\dot{W}_{ideal}}{\dot{W}_{actual}}$$

$$\dot{W}_{ideal} = \dot{m}c_pT_1\left(\frac{T_2'}{T_1}-1\right)$$

$$\frac{\mathsf{T_2'}}{\mathsf{T_1}} = \left(\frac{\mathsf{P_2}}{\mathsf{P_1}}\right)^{\frac{\gamma-1}{\gamma}}$$

$$\dot{W}_{actual} = \frac{1}{\eta_c} \dot{m} c_p T_1 \left(\left(\frac{P_2}{P_1} \right)^{\frac{\gamma - 1}{\gamma}} - 1 \right)$$

$$T_2 = T_1 + \frac{\dot{W}_{actual}}{\dot{m}c_p}$$

Turbine: basic thermodynamics

Turbine efficiency η_t

$$\eta_t = \frac{\dot{W}_{actual}}{\dot{W}_{ideal}}$$

$$\dot{W}_{ideal} = \dot{m}c_pT_3 \left(1 - \frac{{T_4}'}{T_3}\right)$$

$$\frac{\mathsf{T_4'}}{\mathsf{T_3}} = \left(\frac{\mathsf{P_4}}{\mathsf{P_3}}\right)^{\frac{\gamma-1}{\gamma}}$$

$$\dot{W}_{actual} = \eta_t \dot{m} c_p T_3 \left(1 - \left(\frac{P_4}{P_3} \right)^{\frac{\gamma - 1}{\gamma}} \right)$$

$$T_4 = T_3 - \frac{\dot{W}_{actual}}{\dot{m}c_p}$$

Properties of Turbochargers

- - Typically operate at ~ 60K to 120K RPM
- RPM limited by centrifugal stress: usually tip velocity is approximately sonic
- Flow devices, sensitive to boundary layer (BL) behavior
 - Compressor: BL under unfavorable gradient
 - Turbine: BL under favorable gradient

Typical super/turbo-charged engine parameters

- Peak compressor pressure ratio ≈ 3.5
- BMEP up to 22 bar
- Limits:
 - compressor aerodynamics
 - cylinder peak pressure
 - NOx emissions

Compressor/Turbine Characteristics

- Delivered pressure P₂
- $P_2 = f(m,RT_1,P_1,N,D,\mu, \gamma, geometric ratios)$
- Dimensional analysis:
 - 7 dimensional variables \rightarrow (7-3) = 4 dimensionless parameters (plus γ and geometric ratios)

$$\left(\frac{P_2}{P_1}\right) = f\left(\frac{N}{\sqrt{\gamma RT_1}} / D, \frac{\dot{m}}{\sqrt{RT_1}} \right), \frac{\dot{m}}{\sqrt{RT_1}}, Re, \gamma, geometric ratios)$$
Velocity
Velocity

High Re number flow →_{weak} Re dependence For fixed geometry machinery and gas properties

$$\left(\frac{P_2}{P_1}\right) = f\left(\frac{N}{\sqrt{T_1}}, \frac{\dot{m}\sqrt{T_1}}{P_1}\right)$$

Compressor Map

Figure by MIT OpenCourseWare. Adapted from Haddad, Sam David, and Watson, N. Principles and Performance in Diesel Engineering. Chichester, England: Ellis Horwood, 1984.

 T_1 = inlet temperature (K); P_1 = inlet pressure (bar); N = rev. per min.; M = mass flow rate (kg/s) (From "**Principles and Performance in Diesel Engineering**," Ed. by Haddad and Watson)

Compressor stall and surge

Stall

- Happens when incident flow angle is too large (large V_θ/V_x)
- Stall causes flow blockage

Surge

- Flow inertia/resistance, and compression system internal volume comprise a LRC resonance system
- Oscillatory flow behave when flow blockage occurs because of compressor stall
 - reverse flow and violent flow rate surges

Turbine Map

Figure by MIT OpenCourseWare. Adapted from Haddad, Sam David, and Watson, N. Principles and Performance in Diesel Engineering. Chichester, England: Ellis Horwood, 1984.

 T_{03} =Turbine inlet temperature(K); P_{03} = Turbine inlet pressure(bar); P_{4} = Turbine outlet pressure(bar); N = rev. per min.; m = mass flow rate (kg/s)

(From "Principles and Performance in Diesel Engineering," Ed. by Haddad and Watson)

Compressor Turbine Matching Exercise

- For simplicity, take away intercooler and wastegate
- Given engine brake power output (W_E) and RPM, compressor map, turbine map, and engine map
- Find operating point, i.e. air flow (m_a), fuel flow rate (m_f) turbo-shaft revolution per second (N), compressor and turbine pressure ratios (π_c and π_t) etc.

Compressor/ turbine/engine matching solution

Figure by MIT OpenCourseWare. Adapted from Haddad, Sam David, and Watson, N. Principles and Performance in Diesel Engineering. Chichester, England: Ellis Horwood, 1984.

Procedure:

1. Guess π_c ; can get engine inlet conditions :

$$P_2 = \pi_c P_1 \qquad T_2 = \frac{T_1}{\eta_c} \left[\left(\pi_c \right)^{\frac{\gamma - 1}{\gamma}} - 1 \right]$$

- 2. Then engine volumetric efficiency calibration will give the air flow \dot{m}_a that can be 'swallowed'
- 3. From \dot{m}_a and π_c , the compressor speed N can be obtained from the compressor map
- 4. The fuel flow rate \dot{m}_f may be obtained from the engine map :

$$\dot{W}_{E} = \dot{m}_{f} LHV \eta_{f} (RPM, \dot{W}_{E}, A/F)$$

5. Engine exhaust temperature T_3 may be obtained from energy balance (with known engine mech. eff. η_M)

$$(\dot{m}_a + \dot{m}_f)c_pT_3 = \dot{m}_ac_pT_2 + \dot{m}_fLHV - \frac{W_E}{\eta_M} - \dot{Q}_L$$

- 6. Guess π_t , then get turbine speed N_t from turbine map
- 7. Determine turbine power from turbine efficiency on map

$$\dot{W}_{t} = \eta_{t} \left[1 - \left(\frac{1}{\pi_{t}} \right)^{\frac{\gamma - 1}{\gamma}} \right]$$

8. Iterate on the values of π_c and π_t until $\dot{W}_t = \dot{W}_c$ and $N_t = N_c$

Figure by MIT OpenCourseWare. Adapted from Haddad, Sam David, and Watson, N. Principles and Performance in Diesel Engineering. Chichester, England: Ellis Horwood, 1984.

Compressor/ Engine/ Turbine Matching

Figure by MIT OpenCourseWare. Adapted from Haddad, Sam David, and Watson, N. Principles and Performance in Diesel Engineering. Chichester, England: Ellis Horwood, 1984.

Compressor characteristics, with airflow requirements of a four-stroke truck engine superimposed.

(From "Principles and Performance in Diesel Engineering," Ed. by Haddad and Watson)

- Mass flows through compressor, engine, turbine and wastegate have to be consistent
- Turbine inlet temperature consistent with fuel flow and engine power output
- Turbine supplies compressor work
- Turbine and compressor at same speed

Advanced turbocharger development

Electric assisted turbo-charging

Concept

 Put motor/ generator on turbo-charger

reduce wastegate function

Benefit

increase air flow at low engine speed

 auxiliary electrical output at part load

Advanced turbocharger development

Electrical turbo-charger

Concept

turbine drives generator;
 compressor driven by motor

Benefit

- decoupling of turbine and compressor map, hence much more freedom in performance optimization
- Auxiliary power output
- do not need wastegate; no turbo-lag

Advanced turbocharger development

Challenges

- Interaction of turbo-charging system with exhaust treatment and emissions
 - Especially severe in light-duty diesel market because of low exhaust temperature
- Cost