
Lecture #2   Instructor Notes 

 

A. Observables, Scalar Potentials (for compressional waves) 

We want to solve a “full wave” equation soon, and pressure, particle displacement, and 

particle velocity are all observables we can solve for. We will see that they are simply 

related, and also how the latter two are expressed in terms of potentials. For particle 

displacement, we have 
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where d is the displacement potential.  

For the velocity, we have  

v
d

tt

d
u 























  

where v  is the velocity potential.  

It can be shown in a standard derivation of the wave equation (see, e.g. Clay and 

Medwin), that  
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For simple harmonic time dependence, tid e   , we get 
vd ip   2  

Thus we see that in a given constant density layer, we have vdp   ,so we can use 

any of them in the wave equation up to a factor.  

 

B.Boundary conditions 

 

For a fluid-fluid boundary (all that we will consider in this course), we have two 

boundary conditions that we must enforce. They are: 1) pressure is continuous across a 

boundary (so that there is no net force or acceleration of the boundary) and 2) the vertical 

component of particle displacement is continuous (so that there is no separation of the 

boundary (vacuum) or penetration of one boundary by the other.) These physical 
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constraints lead to boundary conditions for pressure, displacement potential, and velocity 

potential. Let’s look at these, with medium 0 above and medium 1 below.  

1. Pressure 

10 pp     from continuity of pressure 

zz
perpdperpd

dd









 01

10
  

Replacing  2/pd  ,we get  

z

p

z

p








 1

1

0

0

11


 

Thus we have pressure boundary conditions with a 1/ρ factor included. This is an easy 

factor to forget – please don’t! 

2. Displacement potential 

Again replacing  2/pd  ,we get using continuity of pressure 
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And as before 
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3. Velocity potential 

Using vip  , we use continuity of pressure to get 
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And looking at  
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and switching the order of the t and z derivatives, we get  
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Now we have some simple BC’s to work with, going across boundaries! 
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C. Specific acoustic impedance 

There is always something interesting that one can learn by using analogies to electrical 

and mechanical circuits. Here, we take a look at what Ohm’s Law can tell us about 

acoustics. If we take velocity    | ⃗  ⃗   |  current I and pressure p  voltage E, then 

we can use Ohm’s law E=IR to define the acoustic resistance R (or in the more general 

case of complex quantities, the acoustic impedance Z) to define the acoustic impedance 

as 
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If we now consider an acoustic plane wave with velocity potential 
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and use  
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For the pressure and velocity in phase, the impedance is real, and is equal to the familiar 

(to acousticians!) “rho-c”   . If one considers spherical waves, then one gets complex 

impedances, which are not very much more difficult to deal with. In the farfield, the 

spherical wave impedance becomes the plane wave impedance seen above. 

  

3



MIT OpenCourseWare
http://ocw.mit.edu

2.682 Acoustical Oceanography
Spring 2012
 
 
 
For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms



