
 

 

   

 

  
  

 

    

 
   

 

  
 

 

 

   
 

 

   

Lecture #12 Instructor Notes (Rough surface scattering theory) 

In these notes on roughness, I’ll be paraphrasing two major references, along with 
including some other material. The two references are: 

1)	 J.A. Ogilvie, “theory of wave scattering from random rough surfaces”, IOP 
Publishing, 1992. (This is an expensive and hard to obtain reference these days, 
but still a very good one.) 

2)	 L.M.Brekhovskikh and Y. Lysanov, “Fundamentals of ocean acoustics”, either 2nd 

edition, Springer 1991 or 3rd edition, Springer 2003. This is a more common 
reference, at a usual price. 

A. Characterization of roughness – Rayleigh prameter 

Rayleigh (1877) provided the first really useful characterization of roughness for 
scattering. Let’s look at this, the so called “Rayleigh Criterion” for scattering. Consider a 
plane monochromatic wave incident at an angle θ1 onto the rough surface shown below. 

Then the phase difference between the energy scattered at points x1 and x2 on the rough 
surface, and scattered to the same angle θ 2 (the angle at which we observe the scattered 
energy) is given by 

Δϕ = k[(h − h )(cos θ + cos θ ) + (x − x )(sin θ −sin θ )]1 2 1 2 2 1 1 2 

where as usual k = ω c = 2π / λ . For specular scattering ( θ1 = θ2 ), we get the simple 
phase difference 

Δϕ = 2kΔhcos θ1 

where Δh = h1 − h2 . 
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For Δϕ << π , the scattered waves are almost in phase and interfere constructively, i.e. 
there is little scattering. 

For Δϕ ~ π ,, there is destructive interference and strong scattering. 

When we average the roughness over the surface, Δh →σ , the RMS roughness. It is 
usual to define “Rayleigh parameter” for roughness in terms of the RMS roughness, i.e. 

R = 2kσ cos θ1 

Thus we see that the “roughness” we consider for a scattering calculation depends on the 
surface, the freq2uency and the incident angle, not just the surface. 

B. Huygens Principle 

We are all familiar with Huygens Principle, which states that each point on a rough 
surface acts as a radiator of spherical waves (the scattered energy). The relative phase  of 
these wavelets is given by  our equation above. Let’s look at how this works. For a 
smooth surface, h1 = h2 everywhere, so 

Δϕ = k(x − x )(sin θ − sin θ )1 2 1 2 

In the specular direction, ( θ1 = θ2 ), so Δϕ = 0 . Thus all the waves from the surface 
interfere constructively. For h1 = h2 , but ( θ1 ≠θ2 ), we get destructive interference for the 
various Δx values, i.e. the waves cancel. 

We note that for both rough and smooth surfaces of finite extent, we get beampattern 
effects, i.e. a diffraction pattern, with a main lobe and sidelobes. These edge effects can 
be very important to the scattering description. 

For a rough surface, looking at the specular direction, we have (as before) 

∆𝜑 = 2𝜋∆𝑘𝑐𝑜𝑠𝜃1 

for the phase difference between the secondary (scattered) wavelets. When ∆𝜑~𝜋, the 
destructive interference reduces the amplitude of the specular field. The extent to which it 
is reduced depends on the average value of the equation above. We will show later, via 
Kirchoff theory, that the reduction in the coherent reflection coefficient is given by  
𝑅c
h=𝑅𝑒𝑥𝑝(− �) where 

 

𝑔 = 4𝑘�𝜎�𝑐𝑜𝑠�𝜃� 
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This equation works both for specular reflection and backscattering. (Note: You should 
be able to easily check the above equation numerically using Huygen’s principle on a 
computer.) 

For a rough surface, now considering the non-specular direction 𝜃2, the first term 
of our “long form” ∆𝜑 equation comes into play and gives the so-called “diffuse field.” 
The phase of the energy scattered in the off-specular direction varies randomly over 0 to 
2π. 

Note that is we look at the average amplitude of the scattered field, 

+ 𝐴�𝑒��
 �!�𝐴�𝑒���
�= =𝐴�
� + 𝐴�
�
�𝐴 
�! 

The last term on the RHS goes to zero due to the phase randomness of 𝜑
 c!h. Thus our 
amplitude average only reflects the coherent field! To look at the incoherent field, we 
must go to intensity statistics, ala 𝐴𝐴∗  
a! , which we treat next. 

C. Statistics of rough surfaces 

There are two essential aspects to the nature of a random rough surface: 1) its 
spread of heights about some reference height and 2) the variation of these heights along 
the surface. Thus, the two quantities we will consider are the surface height distribution 
and the surface correlation function. These are the most common rough surface 
descriptors. 

C.1. Height Distribution 

We look at ℎ(𝑟) where h is the surface height at some point 𝑟 = (𝑥, 𝑦)of the 
surface. The distribution of heights is 𝑝(ℎ). We usually reference h to a mean surface, 
and moreover make the distribution zero mean, i.e. 

∞ 

ℎ 5 = ℎ𝑝 ℎ 𝑑ℎ = 0 
-∞ 

where the angle bracket denotes averaging over the surface. 

The root-mean-square (RMS) height of the surface is simply given by 

𝜎 = ℎ2 
8 = ℎ2𝑝 ℎ 𝑑ℎ 

∞ 

-∞ 

1/2 

Another useful descriptor of roughness is the arithmetic mean, given by 
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∞ 

= ℎ 𝑝 ℎ 𝑑ℎ𝑅a 
!h 

-∞ 

R (arith) can be easily related to σ. For a Gaussian distribution, 𝑅a 
!h = 𝜎 2/𝜋 = 0.8𝜎. 

Much of the work on rough surfaces uses (either assumed or measured, with the 
latter being preferable!) Gaussian height distributions, i.e. 

1
𝑝 ℎ = 

𝜎 2𝜋 
exp (− 

ℎ2 

-)2𝜎

Gaussian surfaces arise (often) when every point on the surface is the result of a large 
number of local events, the results of which are cumulative. This is a result of the Central 
Limit Theorem, i.e.” a random variable x which is the sum of random variables 𝑝i, where 
the 𝑝i are independent, is (under most conditions) Gaussian. (Note: the sea surface height 
distribution is a Gaussian – why?) 

C.2. Surface correlations 

The specification of a height distribution does not discriminate between the three 
surfaces in the following figure. Each is a Gaussian with σ=SAME, but they obviously 
differ in the length scale of the roughness. 

These samples CAN be distinguished by their correlation functions, however. We define 
the correlation function as: 
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𝐶 𝑅 = ℎ 𝑟 ℎ(𝑟 + 𝑅) /𝜎2 

Data are often fit by an exponential correlation function, i.e. 𝐶 𝑅 

There is also the well known “autocovariance function” 𝐶0 𝑅 = 𝜎2𝐶(𝑅), which is just 
the unnormalized correlation function. Obviously, C(0)=1. Also, for a sinusoidal surface, 
C(R)= cos 𝑎𝑟 . Only for truly uncorrelated states does → 0 as R à large. (And we 
often see a large scale correlation that is nonzero). 

For simplicity (and sadly, often for oversimplicity), one can assume that the 
surface correlation functions are Gaussian, i.e. 

𝐶 𝑅 = exp (−
𝑅
𝜆o

z 

2 ) 

In the above, 𝜆0 is the correlation length, i.e. the e-folding length of 𝐶(𝑅). {NOTE: We 
have discussed a scalar R in the above, but it really is a vector – as we will examine soon. 
The above assumes angular isotropy, which is often a bad assumption. } 

= exp (− � ). This 
io 

function runs into difficulty in the gradient of 𝐶 𝑅 at the origin. [We will see this in the 
Method of Small Perturbations for the Neumann BC case.] 

We can get the best of both worlds (Gaussian being smooth at the origin and 
exponential having a good decay law) from two functional forms: 

𝐶 𝑅 = sech (𝑅/𝜆0 

1− −
𝑅� 

𝐶 𝑅 = exp { −
𝑅
𝜆 

� 
}𝜆 

These functions both decay as an exponential at large R, but are smooth at the origin. 
𝜆t/𝜆2 in the latter form determines where the transition in behavior occurs. 

Coutionary notes: 1) in measuring surface roughness, we need to use a discretization of 
𝐼 ≤ ( ! )𝜆0, or we will not see the exponential nature of the surface. 2)  For a finite sized 


0
rough surface, the surface extent provides a long wavelength cutoff to the power 
spectrum which can introduce misleading oscillations in 𝐶(𝑟). 3) It is often noticed that 
more than one correlation length appears, i.e. two-scale roughness. This is quite real. (As 
an example, one can look at capillary waves (e.g. “cats paws”) on top of long surface 
waves. 
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C.3. The Structure Function 

Another (occasionally) useful surface descriptor is the “structure function” which is 
defined as 

𝑆 𝑅 = [ℎ 𝑟 − ℎ 𝑟 + 𝑅 ]Z 

It is related to the correlation function for stationary surfaces by 

𝑆 𝑅 = 2𝜎2[1− 𝐶 𝑅 ] 

The structure function has the advantage that it is independent of the choice of surfaces to 
which ℎ(𝑟) is referenced. BUT, it does not appear naturally in scattering theory. 

C.4. The Characteristic Function 

The characteristic function is the Fourier Transform of the PDF of the height 
distribution, i.e. 

𝜒 𝑠 = 𝑝 ℎ exp 𝑖𝑠ℎ 𝑑ℎ
L 

The 2-D characteristic function is also useful, i.e. 

𝜒� 𝑠�, 𝑠�, 𝑅 = 𝑝 ℎ�, ℎ�, 𝑅 exp 𝑖 𝑠�ℎ� + 𝑠�ℎ� 𝑑ℎ�𝑑ℎ� 

This function assumes stationarity, but one can relax the isotropy constraint that is 
implicitly in the 1D form. 

C.5. The Power Spectrum 

A very useful descriptor of surface roughness is the power spectrum, which is the 
Fourier Transform of the unnormalized correlation function, i.e. 

𝑃 𝑘 = 2
𝜎
𝜋

2 

2 𝐶 𝑅 exp 𝑖𝑘 ∙ 𝑅 𝑑𝑅 

The power spectrum may be related to the FT of the surface by substituting for 𝐶 𝑅 
We start by writing: 

c1
𝐶 𝑅 = lim ℎ 𝑟 ℎ 𝑟 + 𝑅 𝑑𝑟

A�→o 𝐴m𝜎2 
-c 

. 
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We then substitute this to get 

1
𝑃 𝑘 = lim ℎ 𝑟 exp 𝑖𝑘 ∙ 𝑟 𝑑𝑟

��→� 𝐴�(2𝜋)� 

We see that the power spectrum, unlike previous descriptors, can describe both the spread 
of the heights above the mean surface and also the height variation along the surface! 

The total area under the spectrum gives the variance (power), i.e. 

𝑃 𝑘 𝑑𝑘 = 𝜎� 

This result is a special case of a more general theorem (not shown) that the moments of a 
spectrum are related to the RMS averages for higher order surface derivatives. 

The power spectrum for an anisotropic surface with a Gaussian correlation 
function is 

𝜎� 𝑦� 
𝑃 𝑘�, 𝑘� = 𝑒𝑥𝑝 −(

𝑥
�

� 
+ �) exp 𝑖 𝑘�𝑥 + 𝑘�𝑦 𝑑𝑥𝑑𝑦 2𝜋 � 𝜆� 𝜆�

𝜎�𝜆�𝜆� 
�𝜆�� �𝜆��= exp (− 
𝑘�
4 
)exp (− 

𝑘�
4𝜋 4 ) 

Where 𝜆1, 𝜆2 are the correlation lengths in the x,y directions. 𝑃 𝑘v, 𝑘2 itself is a 
Gaussian, since the FT of a Gaussian is a Gaussian, with a standard deviation of 2/𝜆., 
where j=1,2 (or x,y). 

The power spectrum for an anisotropic surface with an exponential correlation function 
is: 

𝑥 𝑦
𝑃 𝑘v, 𝑘2 = 𝑒𝑥𝑝 −( + ) exp 𝑖 𝑘1𝑥 + 𝑘2𝑦 𝑑𝑥𝑑𝑦 2𝜋 2 𝜆1 𝜆2 

𝜎2 

f

o

c 

𝜎� 1 1 
= 𝜆�𝜆�𝜋� (𝜆� �) �� + 𝑘��)�� + 𝑘� (𝜆�

The last two terms in the last equation are “Lorentzian” functions. Each one is zero mean, 
and full width at half maximum is 2/𝜆., j=1,2. 
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D. Higher order statistics 

D.1. Two point height probability distribution 
    

It is sometimes useful to examine p (h, R ;h , R ) , where p (h, R ; h , R )dhdh 2 1 0 2 2 1 0 2 0  
is the probability that the surface height is between h and h+dh at R1 and between 

 
h + dh at R . If we consider an isotropic, stationary Gaussian surface (correlation 0 0 2   
dependent only on R = ), we get the pdf in the form: R2 − R 

1 ⎪⎧ ⎡h2 + h0
2 − 2hh0C(r)⎤⎪⎫ 

p2 (h, h0 , R) = exp ⎨− ⎢ 2 2 ⎥⎬22πσ 1− C 2 (r) ⎩⎪ ⎣ 2σ [1− C (R)] ⎦⎪⎭ 

This has obvious limits: 

p (h, h , R) → p(h) p(h ) as R →∞2 0 0 

p (h,h , R) → p(h)δ (h − h ) as R → 02 0 0 

D.2.  Higher order surface correlations/derivatives 

There is a useful theorem for estimating RMS values of surface derivatives from 
the correlation function, namely 

2i  i  2 
2 ⎛ ∂ C(r0 − r ) ⎞⎛ ∂ h(r ) ⎞ 

 = σ ⎜ ⎟⎜ ⎟ r =r⎜ 2i ⎟⎜ i ⎟ 0∂x ∂x⎝ ⎠ ⎝ ⎠S 

One can see that the existence of the derivative of the correlation function at R=0 is 
needed for the existence of the higher order derivatives of the surface heights. 

The above theorem can quickly provide a useful parameter of the rough surface, 
the RMS gradient. Assuming an isotropic surface with a Gaussian correlation function, 
we get 

⎛ ∂h ⎞ 
2 

σ 2⎛ ∂h ⎞ 
2 

⎜ ⎟σ = = =⎜ ⎟S ⎜ ⎟ λ⎝ ∂x ⎠ ⎝ ∂y ⎠ 0 

We see that an increase in the RMS roughness or a decrease in the correlation length 
gives a larger RMS gradient, as expected. 

.D.3. Radius of curvature and other considerations 

The radius of curvature rc at a point on a rough surface is given by 
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dt̂  n̂ 
= 

ds rc

where n̂ is the unit surface normal, t̂ is the unit surface tangent, and s is the arc length 
along the surface. For a one-dimensional surface, this can be shown to be: 

3 / 2 
⎡ ⎛ dh ⎞ 

2 ⎤ 
2 2 )−1 r = −⎢1+ ⎜ ⎟ ⎥ (d h / dxc 

⎢ ⎝ dx ⎠ ⎥⎣ ⎦ 

The average of the modulus of the radius of curvature will be infinite, due to points 
⎛ dh ⎞ 

2 

where ⎜ ⎟ goes to zero. However, if we replace the derivatives by their averages, we 
⎝ dx ⎠ 

get a finite result 

3 / 22 2 
der −avg λ0 ⎛ 2σ ⎞ 
rc = ⎜1+ 2 

⎟⎜ ⎟2σ 3 ⎝ λ0 ⎠ 

E. Isotropy, Stationarity, and Ergodicity 

ISOTROPY – Rotational invariance, i.e. the statistics of the surface are independent of 
the direction along the surface. This simplifies the mathematics considerably, but is not 
always correct. If the processes forming the surface are directionally dependent, then the 
surfaces formed will also be. In that case, the correlation function will display such 
dependence, e.g. for an exponential 

⎡ ⎛ ⎞⎤ 
C(x, y) = exp ⎢− ⎜ 

x y 
⎟+ ⎥⎜ ⎟λ λ⎢ ⎝ x y ⎠⎥⎣ ⎦ 

and 

⎡ ⎛ x 2 y 2 ⎞⎤ C(x, y) = exp ⎢− ⎜ 2 + 2 
⎟⎥⎜ ⎟λ λ⎢ ⎥⎣ ⎝ x y ⎠⎦ 

A good example (especially for this course!) of a directional spectrum is the 
Pierson (also called Neumann-Pierson) power spectrum for ocean surface waves. The 
winds force a very directional spectrum, given by (for fully developed seas far from a 
shoreline, i.e. “infinite fetch”) 

1 ⎡ g ⎤ ⎡ k ⎤2 −1 2P(k1, k2 ) ∝ 9 / 2 exp ⎢ 2 ⎥ cos ⎢tan ( )⎥k ⎣v k ⎦ ⎣ k1 ⎦ 
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where g is the accelaeration of gravity, v is the windspeed,  k =  (k 21 +  k 22 )1/ 2 , and k1 and 
k2 are mutually perpendicular wavenumber directions, with k1 being in the wind 
direction. 

STATIONARITY – Very simply, the translational invariance of a statistic or property of 
the surface. (Temporal stationarity is  the invariance wrt a time displacement, but we will 
not pursue temporal issues here.) For two point statistics (e.g. height correlations), the 
property depends only on the difference of the two points in range (separation), and not 
on their absolute positions. 

ERGODICITY- “Any statistical average taken over many different parts of  one surface 
realization (spatial averaging) is the same as the average over many different realizations 
(ensemble averaging).”  For time varying surfaces, the concept is extended to averaging 
over the same part of the surface at many different times (temporal averaging), which 
will produce the same statistical description as spatial or ensemble averaging. In much of 
the work we do, we assume ergodicity. Also, ergodicity implies stationarity. 

E. Fractal Surfaces 

We have become increasingly familiar with fractal surfaces over the last quarter 
century or so. Surfaces whose structure looks similar at any “level of magnification” or 
scales (so-called “self similar surfaces”) are fractals. Rough surfaces like coastlines, the 
ocean bottom, cliffs and mountains, etc. often show a degree of self-similar behavior. It is 
thus obvious that fractal mathematics needs to be incorporated into rough surface 
scattering theory. [A classic paper on how fractals were introduced into the description of 
ocean bottom roughness is: J.A. Goff and T.H. Jordan, “Stochastic modeling of seafloor 
morphology:inversion of Sea Beam data for second order statistics”, J. Geophysical 
Research 93, B11, pp 13589-13608, Nov 10, 1988. It is part of the background reading 
for this course.] 

A fractal structure may enclose a finite volume, but have infinite area. This 
property is described by the “Haussdorf dimension” D+1, where D is the dimension of 
the surface when cut by a plane. Non fractal surfaces have D=1, but fractals have 
dimensionality 1<D<2 (a non-integer dimension.) 

For rough surface scattering, we can relate D to the surface height function. Let’s 
assume that a one-dimensional rough surface has the property: 

Δαh(x + Δ) − h(x) ~ 

for small delta. Alpha is called the Lipschitz exponent. For the range 0 < α < 1, the 
surface is continuous but not differentiable, and therefore is fractal. The exponent alpha is 
related to D through α = 2 − D . 

Fractal surfaces cannot be described using many of the standard statistical metrics. For 
h2instance, is infinite because of the existence of structure down to infinitely small 

scales. The existence of infinitely long order also leads to infinite correlation lengths. 
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However, all is not lost – the power spectrum is still useful for fractals! Let’s look at 
forms: 

P(k) = 1/ kν 

where nu is related to the dimensionality of the fractal by 

5 −νD = 
2 

Thus 1 <ν < 3 . For this range of nu, the Fourier transform of P(k) is infinite, implying an 
infinite RMS surface height and infinite correlation function. 

Finally, we note that the fractal nature of a surface usually holds only over some 
restricted range of k: k1 < k < k2 . The limits of k are the resolution of the sampling (at 
the smallest) and the sample size (at the largest.) 

F. Some probability integrals 

Since Gaussian statistics are so commonly invoked (whether correctly or not!), we 
often need to evaluate Gaussian moment integrals. There are 1-2 simple tricks to doing 
that that should be in ones tool kit, which we will describe here for completeness. To 
begin with, consider: 

I n = 
∞ 
x exp( −λx2 )dx∫0 
n 

where n is an integer. The odd moment integrals vanish when we take the limits from 
minus infinity to infinity (which is what we want), so we just look at the even moments. 
Let’s consider In to be a function of λ , and take the derivative wrt λ . We obtain: 

dI n ∞ 2 n 2 = − x x exp( −λx )dx∫0dλ 

If I 0 is known, then all the In for even n can be easily obtained. To get I 0 , we use a 
simple polar form: 

∞ ∞ 
2 2 2 2 2I 0 = exp( −λx )dx∫ exp( −λy )dy = ∫∫exp( −λ(x + y ))dxdy ∫ 

0 0 

2 2 2We use the polar forms r = x + y and tan θ = y / xand let the element dxdy = rdrdθ . 
The integration limits become θ = 0 →π / 2 and r=0 to infinity. Thus we get 

2 2 πI0 = ∫∫exp( −λr )rdrd θ = I12 
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I1 is easily evaluated using the substitution u = λx 2and du = 2λxdx to give I1 = 1 . 
2λ 

1Thus we get that I0 = π .Differentiating this , we get 
2 λ 

π −3 / 2 3 π −5 / 2I 2 = λ and I 4 = λ etc. 
4 8 

The extension from minus infinity to infinity just involves multiplying the above by a 
factor of two (by symmetry about the origin). Also, we must remember that λ = 1/ 2σ 2 
for the standard Gaussian form. 
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