
Lecture #15 Lecture Notes 

 
 The ocean water column is very much a 3-D spatial entity, and we need to 
represent that structure in an economical way to deal with it in calculations. We will 
discuss one way to do so, empirical orthogonal functions, in what follows. 
 
A.1.  EOF’s 
 
 Let us assume a representation of the 3D soundspeed field (though it can actually 
be ANY ocean field) by 
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As we have been doing with our other linear inverse problems, let’s think of this in 
matrix form. In particular, let’s consider a real world case where we have done six CTD 
profiles to get the ocean sourdspeed profile at six different (x,y) points. Let’s also 
consider 4 vertical points of each profile as giving a fair sampling of the vertical 
structure. (We could always use more if the vertical profile has a lot of structure – we just 
pick four here as an example.) Then the six CTD’s and four levels let us form a 4x6 
matrix, as you can see in my beautiful handwriting below: 
 

1



 
Subtracting the mean soundspeed at each depth level (seen in equation above) from each 
measurement, we get the 4x6 soundspeed variance matrix seen above, i.e. the  Ac   
matrix. This is OK, but we really want to work with square matrices. No problem – we 
just multiply the A matrix by its transpose, which is a 6x4 matrix, i.e. 
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This is nice, because the dimension of the matrix is just the number of  vertical levels we 
want to use, generally of order ~10. Often we have many CTD casts, or vertical profiles 
from towed CTD’s like Scanfish, to deal with, so that M>>N in general. The big gain 
here is that 
 

 TAA  
 
is a standard eigenvalue problem!  The i  (column vectors) belonging to each i  (the 
eigenvalues which represent the energy in each mode) are called the “Empirical 
Orthogonal Functions” and will be seen to be very useful. Let’s discuss their properties 
for a second. 
 
 First, they are the modes of the covariance matrix – they express the variability of 
c(x,y,z) about the mean profile in a modal representation. Second, they are empirical 
because they are data based – no theory or model involved. And they are orthogonal 
because the relation ij

T

ji   holds. There are also two other properties of the EOF’s 
that turn out to be very useful. First, they put the most energy possible into the lowest 
modes, i.e. they produce the “reddest” modal spectrum possible. This is useful because 
the ocean dynamical modes also have a red spectrum, so that the EOF’s provide a good 
match to the ocean dynamics. And second, due to this red property, one can often 
truncate the modal sum with little or no harm to the results – a nice computational saving. 
 
Let’s look closer at the EOF modal representation, which is: 
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This expression is nice, but have we done anything better than write c(x,y,z) in a different 
way? Um,yeah. We had c(x,y,z) only at our measurement sites, and now with this 
representation, we can find c(x,y,z) everywhere in a way that is consistent with the ocean 
dynamics. To see this, let’s first get the ),( yxai  at the measurement sites.  
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Following standard procedure, we use the orthogonality of the EOF’s to project out the 
)(zi on the RHS, i.e. we multiply the equation above by )(zj and integrate over z.  So 

we have  
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or 
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We now have the EOF coefficients at the (x,y) coordinates of our measurements. This is 
what we need, as we can interpolate the ),( yxai  in the x-y plane on a mode by mode 
basis, as seen below! 
 

 
In the little cartoon above, we want the 3D oceanography along the source to receiver 
acoustic line for some acoustics purpose or at the “want” spot. But we just have the 

),( yxai at the measurement points in the region. But, if we interpolate those coefficients 
in 2D (an easy enough exercise, as we will see) on a mode by mode basis, we can get the 
field anywhere we want, e.g. the “want” spot on the picture, or along the S/R track. And 
not only can we do this – this is perhaps the best, most consistent interpolation we can do, 
as we will see in the next section. 
 
A.2. Gauss Markov interpolation - theory 
 
 We can interpolate the EOF coefficients in (x,y) via canned routine 2D 
interpolators to get a 3D ocean field, and there is no law to stop us. But there are better 
and worse ways to do the interpolation. In saying this, we’re not talking about efficiency, 
but rather respecting the dynamic scales of the medium so that we don’t interpolate 
entirely uncorrelated points! We will look here at the so-called “Gauss Markov” 
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interpolator, which is both efficient, and also takes into account the scales of the ocean 
medium. 
 
 Assume that a measurement    (e.g. the ),( yxai that constitute our 
“measurement” at each r=(x,y) position) consists of a true value   plus some noise    
(which can be computed from the error/noise in our c(x,y,z) measurements). So 
 

         
 
If the error is spatially uncorrelated, and also not correlated to the true value, i.e. 
 
 [    ]   

              where    is the error variance 
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Then (without showing the proof) the least squares optimal estimator of   at any point t is 
given by 
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In the above, n is the number of measurements (data points) one uses in framing the 
estimate and the A,B matrices are given by: 
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where C is the spatial correlation function. We see that this formalism explicitly injects 
the spatial scale(s) of the ocean medium into the problem, so that the estimate for the 
soundspeed (or temperature or whatever) field has both reasonable modal structure (the 
EOF modes and ocean modes are similar) and also the correct correlation scales for the 
ocean modes. Moreover, in doing the sums above, one only has to consider the n data 
points that are within a correlation length of the point we are trying to interpolate to. This 
makes the scheme more numerically efficient as well. 
 
 Often, for ocean work, we can use a simple radial form for the correlation 
function, e.g. a Gaussian, where the width of the Gaussian is the radial spatial correlation 
length. In considering ocean eddies (as an example), we can take this correlation length to 
be the “Rossby radius” of deformation, which describes how the Coriolis effect moves 
the water in a circular path given the latitude and speed of the feature. Specifically, 
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  phase velocity of the feature of interest 
 

As an example, we can use         ~ 50 km at 45 degrees for deep ocean eddies, and set 
the correlation length to this number.  
 Another way to get the correlation function, if one has lots of data, is the data-data 
correlation function, which we define via 
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We will generally get a more irregularly shaped correlation function from the real data, 
but it will be a correct one. We also not in passing that for the EOF’s (and any other such 
modal representation), each mode has its own correlation length, i.e.       .  
 
A.3. Gauss Markov interpolation – some examples 
 
 Let me post some old calculated examples of using the Gauss Markov interpolator 
in various circumstances. The first example is a Harvard Open Ocean model section of 
the Gulf Stream. We look at the soundspeed contours at some depth (which doesn’t so 
much matter for now), and get the solid line result from the model. Now, if we remove all 
the grid points of the model except for the ones with asterisks (a drastic decimation of the 
data), we want to retrieve an “interpolated” version of the Gulf Stream SSP using a Gauss 
Markov interpolation. Using the data-data correlation function, we were able to get the 
dashed line result – a very good match to the original 3D field! 
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Another useful example to show is how one can “interpolate through bathymetric 
change” using the Gauss Markov interpolator.  By looking at the average soundspeed at 
each depth level, which can have a different number of points, and assigning the water 
soundpeed in the sediment to be the average of the water column points at that level, we 
get reasonable answers, e.g. 
 

7



 
 
An example of this is interpolating in the vicinity of a seamount. This is a crude old 
MATLAB result, but shows quite well that the interpolation with and without bathymetry 
is consistent. The only difference in the results is inside the seamount, where the result is 
meaningless anyway! 
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