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INTRODUCTION TO SAMPLING THEORY AND DATA ANALYSIS
 These notes are meant to introduce the ocean scientist and engineer to the concepts 
associated with the sampling and analysis of oceanographic time series data, and the effects that 
the sensor, recorder, sampling plan and analysis can have on the results.  In order to plan the 
optimum sampling and analysis plan, one needs to understand what information and analysis are 
required, and how all these factors will affect the final result.  To get the most from these lecture 
notes, the student should do supplemental readings from the references listed below.  Exercises 
utilizing the MATLAB software package will be assigned at the appropriate place in the lectures.   

 An outline of this section is given below, and covered in handouts.    

1. Time Series and Analysis:  
•Properties of a random, stochastic processes  
•Statistical description: mean, variance, correlation/covariance, spectra  
•Fourier transforms, frequency domain/time domain description of a process  
•Digital filtering and filters: Convolution product, filters, and filter response  

2. Sampling Theory:  
•Sampling process, sampling theorem, and sampling effects on statistics  
•Aliasing and the Nyquist frequency  
•Power density spectra, coherence, degrees of freedom, confidence limits  

3. Environmental Sampling in the real world:  
•Calibrations: static, dynamic  
•Digitizing effects, prefiltering  
•Sensor frequency response effects  
•Sensor noise limitations  

 

Suggested references and readings:  

Jenkins, G.M. and D.G. Watts, Spectral Analysis and its Applications, Holden-Day, San 
Francisco, 1968.   

Koopmans, L.H., The Spectral Analysis of Time Series, Academic Press, New York, 1974.   

Bendat, J.S. and A.G. Piersol, Random Data: Analysis and Measurement Procedures, Wiley-
interscience, New York, Second Edition, 1986.   

Daley, R., Atmospheric Data Analysis, Cambridge University Press, New York, 1991.   

Cochran, W.T., et al, “What is the Fast Fourier Transform,” IEEE Trans. Audio and 
Electroacoustics, AU-15(2), 45-55, 1967.   
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Glossary of Terms, from Blackman, R.B. and J.W. Tukey, The Measurement of Power Spectra, 
Dover, 1958.   

Bingham, C., M.D. Godfrey and J.W. Tukey, “Modern Techniques of Power Spectrum 
Estimation,” IEEE Trans. Audio and Electroacoustics, AU-15(2), 56-66, 1967.   

Welch, P.D., “The use of Fast Fourier Transform for the Estimation of Power Spectra: A Method 
Based on Time Averaging of Short, Modified Periodograms,” IEEE Trans. Audio and 
Electroacoustics, AU-15(2), 70-73, 1967.   

Carter G.C., C.H. Knapp and A.H. Nutall, “Estimation of the Magnitude-Squared Coherence 
Function Via Overlapped Fast Fourier Transform Processing,” IEEE Trans. Audio and 
Electroacoustics, AU-21(4), 337-344, 1967.   

 

Background 
 Everyone has some idea vague of what is involved in making measurements of the 
environment.  However, few people have the background to really know how to do it properly.  
This is an introduction to how to measure the environment and analyze the results to obtain 
information for scientific studies and management decisions.  As an ocean scientist or engineer 
you desire to make and analyze observations that will give you certain statistics describing the 
environment.  To get these statistics, you need to design an experiment, place sensors in the 
field, digitize and record the results, analyze them on a computer, and finally present them in a 
meaningful manner.  In reality, all these processes that you must go through can be thought of as 
a filter, or that you are looking at the ocean through “colored” glasses.  In order to know what 
your glasses are doing to your view of the ocean, you need to know how to design an experiment 
to get the data that you want, select the sensors which will properly measure the environment, 
use recorders that will satisfactorily record the data, and utilize analysis techniques which will 
give the desired results.  What follows is a simple introduction to the background that you will 
need to know in order to sample the environment properly.  To simplify the discussions, much of 
the statistical complexity has been removed, so in order to become really professionally involved 
in data analysis, further course work is required to fill in this statistical information.   
 

Properties of Random variables
 We make the assumption that the environmental data of interest is a stationary, random, 
stochastic process.  If this is so, then the environmental process that we wish to study can be 
fully described by its statistics.   

Random Variables - A deterministic variable is one whose value may be determined or 
estimated exactly.  An example of a variable which can be predicted is the result from an explicit 
mathematical relationship, e.g. y(x) = a + bx or y(x,t) = cos(kx - ωt + θ).  A random variable is 
one in which perfect prediction of succeeding values is impossible.  Examples of random 
variables are the time until the next alpha particles is emitted from a radioactive source, the next 
direction taken by a particle in Brownian motion, or the elevation of the sea surface at a specific 
latitude, longitude and time.  A set of observations of a random variable represents only one of 
many possible realizations.   
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Stochastic Process - A stochastic process is a collection of random variables.  One observes a 
stochastic process when he examines a process developing in time in a manner controlled by 
probabilistic laws.  A single set of observations is called a "sample function" or “sample record.”  
A random stochastic process is described by all its possible sample functions.  Repeated 
observations will result in sample functions that are different, or are not the same function of 
time, but have the same statistics.  Some examples of stochastic processes are the number of 
particles emitted from a radioactive source, the path of a particle in Brownian motion, or the sea 
surface elevation variations due to surface wind waves.  One can not predict exactly any 
succeeding values, but one can describe succeeding values statistically.   

Stationary processes - The assumption that a random process is stationary is the most important 
assumption made in time series analysis.  Perhaps this assumption is bad, at best it is only 
approximately true.  A process is stationary when its "statistics" remain constant with time.  
Examples would be the output of a white noise generator, or the path of a particle in Brownian 
motion.  An economic time series of Gross National Product (GNP) of the U.S. tends to increase 
with time, so is non-stationary.  Hence, a stationary process is in statistical equilibrium and 
contains no trends or ramps.  In actual practice we see three kinds of processes, 1) stationary, 
such as the output of the white noise generator, 2) quasi- stationary over a short period, such as 
atmospheric turbulence over a few minutes, or ocean waves over a few tens of minutes, and 3) 
non-stationary, such as the GNP, where the properties (statistics) are obviously changing with 
time.  An oceanic example of a non-stationarity in a time series would be the surface wave field 
at the WHOI dock measured for 3 hours.  During that time the tide would change the mean sea 
level by an amount which would "look" like a trend, but is really just a large, low frequency 
signal which is not resolved by our short record length.  The wave field also might be growing in 
response to wind forcing, so the wave height and wavelength are changing with time.  Another 
example would be the short-term temperature fluctuations observed for a month during the 
spring which are superimposed on the yearly warming and cooling.  Since most geophysical 
spectra are “red,” or have more energy at low frequencies than at high frequencies, this may be a 
significant problem.  Therefore, “beware” of unresolved low frequencies.   
 

Time - Frequency Domain Description of a Process
Time Series - Everyone is familiar with a time series representation of some phenomena, that is 
a series of values at successive points in time.  For example the tides or surface waves seen at the 
coast appear to vary somewhat like a sine wave as a function of time.  Observations of 
oceanographic temperature or currents at a particular position as a function of time is a time 
series.  Time is a continuous variable, and is represented as a function of time by x(t) as shown 
in Figure 1 below.   

 Although geophysical processes are continuous in time, practical considerations require 
that we sample environmental process at discrete intervals in time, δt, for a finite length of time, 
T.  That is, at regular intervals such as once a second, one minute, two hours, etc., an observation 
is made of the continuous process for a finite length of points.  In order to simplify the analysis, 
sampling should always be done at equally spaced intervals in time.  (It should be noted that the 
monthly averages often tabulated are not evenly spaced in time, so should not be analyzed as 
such.)  We will consider a process, x, which is sampled at equally spaced time intervals, δt.   
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Figure 1.  X is a continuous function of time, and is plotted with its value on the ordinate axis 
with value increasing upward and time increasing to the right on the abscissa.   
 
If the number of samples or terms in the time series is n, then the length of the series (which was 
T) will be nδt.  The relationship between the discrete sample set, xt, (what we have to work with) 
and the original continuous function, x(t), will be covered below, but it is obvious that one needs 
to sample fast enough to be able to “see” the higher frequency fluctuations in the signal.   
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Figure 2.  Discrete time series, xt, of observations shown in Figure 1, but sampled every 4 units 
in time, or δ t = 4.   
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Statistical descriptions - The second assumption (after stationarity) that we make is that the 
process may be adequately described by the lower moments of its probability density 
distributions.  These include the mean, the variance, and the covariance, with its transform, the 
power spectrum.  In our discussions below, we shall make a simplification by eliminating the 
probability density distribution function from our expected values.  This would show up as 
multiplying the probability that x has a certain value in the integrals below.  This makes the 
concepts involved in time series analysis a bit easier to follow in this introduction by eliminating 
some of the statistical considerations.  However, in order to fully understand and use the power 
involved in proper data analysis procedures, one must go back and cover the concepts discussed 
below with a full statistical approach.   

Mean.  The mean is just the average or expected value for a process.  Consider x(t) as a 
continuous realization of a sample function of a stochastic processes.  Then the mean is 
just the "expected value" or most probable value,  

                       ⌠ ∞ 
                       ⎮  x(t)dt     
                       ⌡−∞                1   ⌠ T 
                  µ = ----------- = lim ---  ⎮  x(t)dt Eq 1 
                         ⌠ ∞         T→∞ 2T  ⌡ -T 
                         ⎮  dt 
                         ⌡ −∞ 

This is just the "static" component of the process.  In practice we take the discrete time 
series, xt, as the sample series which extends from t = 1 to m, at internals of time, δt.  We  
can look at our statistics as being estimates of the actual statistics of the continuous 
process.  As the number of terms in the series becomes large, then the estimated statistics 
converge to the actual statistics.  The error in estimating the statistics is made up of 
several parts:   

1. the sampling accuracy related to the length of the series, m, and sample 
interval, δt - that is how closely the sampled series, xt, represents the true 
series, x(t), also of importance is the  

2. digitizing accuracy used to create the actual numbers, xt, and finally the 
3. computer accuracy in doing the actual analysis calculations.  On modern 

computers (workstations and PC's) this is generally not a problem.   

 The discrete representation of the mean is just the sum over all the terms, 
normalized by the number of terms  

                           m                   m 
                   µ ≈ 1/m ∑ xi or µ ≈ µ’ = 1/m ∑ xi Eq 2   
                          i=1                 i=1 

as m, the number of terms, goes to infinity, this converges to the real mean. 

Mean Square and Root Mean Square.  The "intensity" of the series is given by the 
mean square value 
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                      ⌠  ∞  
                      ⎮  x(t)²dt         
                      ⌡ −∞                 1  ⌠ T 
                 Ψ² = --------- = lim ---   ⎮  x(t)²dt Eq 3 
                        ⌠ ∞        T→∞ 2T   ⌡ -T 
                        ⎮ dt       
                        ⌡ −∞ 

Its positive square root is called the rms or "root mean square" value.   

Variance.  The "dynamic component" of the series is given by the variance.  This is the 
mean of the square of the differences from the mean, 

                  ⌠ ∞ 
                  ⎮  [x(t)-µ]²dt  
                  ⌡ −∞                   1 ⌠ T  
            σ² = --------------- = lim ---⎮  [x(t)-µ]²dt Eq 4 
                     ⌠ ∞           T→∞ 2T ⌡ -T  
                     ⎮  dt     
                     ⌡ −∞  

It is easy to expand the above equations to show that 

                       Ψ² = σ² + µ² 

The discrete representation of the variance is just   

                             m 
                    σ² ≈ 1/m ∑ [xi-µ]²  Eq 5 
                            i=1 

The positive square root of the variance is called the standard deviation, σ.   

Gaussian or Normal Distribution: One often hears about a normal or gaussian 
distribution, where the process is random, but the observations are grouped about the 
mean with a greater probability that they are nearer the mean, than farther away.  This 
distribution is often found in geophysical processes and is often the statistics assumed by 
a processes when we calculate the statistics.  When one samples the real environment and 
calculates the statistics of a process, the resultant is a good approximation of a Gaussian 
distribution.  The probability density distribution function for a process x(t) with a mean 
µx and standard deviation σx is given by  

             p(x) = (σx √2π)−1 e-(x-µx)²/2σx²

The normal or Gaussian distribution is plotted below in Figure 3 for σx = 1 and µx = 0.   
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Figure 3.  A Gaussian distribution of quantity x, giving the probability of the occurrence of a 
deviation in x from its mean value of 0.   

*** Assignment #1 *** 

A. Work with MATLAB until you are comfortable.  Create a 2048-point sine wave with an 
amplitude of 2.0 and a period of 64.  First you have to create an array of angles as the 
argument of the sine wave.  Create the numbers from 1 to 2048 by i=1:2048 and multiply 
them by 2π and divide by 64 to get the argument.  Take the sine of this and multiply by the 
amplitude, 2.0, to get your final series.  You can change the initial phase of the sine wave by 
adding a constant to the angle series.  Plot the resultant series and label the axes.   

B. Calculate the statistics of the series (maximum, minimum, mean, mean square, root mean 
square (rms), variance and standard deviation).  Some of these computations can be done 
with standard MATLAB functions, and others you will have to create.  Do these results make 
sense with what we have discussed in class?  Write your own MATLAB “stats” function for 
calculating these statistics and outputting the results.   

C. The series you generated is deterministic, i.e. not a random series.  Generate a 2048-point 
random series using MATLAB’s random number generator.  If you use the RAND function, 
the series that has amplitude of 0 to 1.0 with uniform probability of any value between 0 and 
1.  If you use the RANDN function, the series is normally distributed about 0 – any value 
from –½ to ½.  If you use the first, you will want to offset the series by 0.5 to bring the mean 
to zero.  Then you can multiply the result by 0.1 to make a random series of amplitude 0.1, 
and add this to your sine wave.  Calculate the statistics of this random "noise" series, and the 
sine wave with the random series added (this series is now random since you can not exactly 
predict the next value in time).  Does this agree with what we have discussed in class?   

D. Plot the normal and uniform distribution series and discuss of this simple exercise in terms of 
the statistics and your understanding of time series so far.  Note: Discussion is important! 
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Covariance.  The auto-covariance function describes the dependence of values of the 
sample function at one time, on those at another time.  The auto-covariance for the 
continuous series is a function of time lag, τ. 

                       ⌠ ∞  
                       ⎮  [x(t)-µ][x(t-τ)-µ]dt 
                       ⌡ −∞   
                R(τ) = ------------------------          
                              ⌠ ∞  
                              ⎮  dt  
                              ⌡ −∞    
         Eq 6 

                            1   ⌠ T 
                R(τ) = lim ---  ⎮  [x(t)-µ][x(t-τ)-µ]dt 
                      T→∞ 2T   ⌡ -T 

Note that R(τ) is an even function (symmetric about τ = 0, or the same at τ = -τ) with a 
maximum at τ = 0.  The auto-covariance is useful in detecting a deterministic signal in 
the presence of random background noise.  It is obvious that if τ = 0, then the auto-
covariance function, R(0) = σ², the variance.  

Correlation.  A normalized form of the covariance function is often used.  The auto- 
correlation function or auto-correlation is  

                            R(τ) 
                    ρ(τ) = ------   Eq 7 
                            R(0) 

where ρ(τ) is a dimensionless number with |ρ(τ)| ≤ 1.  If the sample function has a 
predominate periodicity, then at lag τ corresponding to that period, R(τ) will have a 
relative maximum or minimum since the series will be shifted over one period and line 
up.   

Example.  Consider the arbitrary function of time = A Cos(kx - ωt + φ) where A is an 
arbitrary amplitude of the sinusoid, k is the wavenumber (2π/wavelength), x is the 
horizontal coordinate in the direction of the sinusoid, ω is the frequency (2π/period), t is 
time and φ the initial phase.  Then, since R(τ) is symmetric about t=0, we can take the 
integral over only positive times by doubling the right hand side, and holding x constant,  

                        1  ⌠ T 
             R(τ) = lim -  ⎮ A Cos(kx-ωt+φ) A Cos(kx-ω(t-τ)+φ)dt   
                   T→∞ T  ⌡ 0 
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i. take t = 0, and changing the range of the integration from t=0 into blocks with t going 
from 0 to π/ω, and then multiplying by n where we let n go to infinity in the limit.  Then 
T in the denominator becomes nπ/ω and 

                            nω ⌠ π/ω 
                R(0) = lim --- ⎮ A² Cos² (kx - ωt + φ)dt 
                       n→∞ nπ ⌡ 0 

and since Cos²(arg) where arg goes from 0 to π is ½,  

                R(0) = ½A² and ρ(0) = 1.0 

ii. take t = 2π/ω and again change the range of the integration as above 

                 2π         nω ⌠ π/ω 
               R(--) = lim --- ⎮ ACos(kx-ωt+φ) ACos(kx-ωt+φ-
2π)dt 
                 ω     n→∞ nπ ⌡ 0 

                            ⌠ π/ω 
                      = ω/π ⎮ A² Cos²(kx-ωt+φ)dt 
                            ⌡ 0 

                  2π                 2π 
                R(--) = ½ A² and   ρ(--) = 1.0 
                  ω                  ω 

iii. take τ = π/ω   

                  π        ⌠ π/ω 
                R(-) = ω/π  ⎮ A Cos(kx-ωt+φ) A Cos(kx-ωt+φ-π)dt    
                  ω         ⌡ 0 

                              ⌠ π/ω 
                      = - ω/π ⎮ A² Cos²(kx-ωt+φ)dt 
                              ⌡ 0 

                  π                 π 
                R(-) = -½ A² and  ρ(-) = -1.0 
                  ω                 ω 

iv. Finally take τ = π/2ω  

                   π         ⌠ π/ω 
                R(--) = ω/π  ⎮ A Cos(kx-ωt+φ) ACos(kx-ωt+φ-π/2)dt 
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                  2ω         ⌡ 0 

                            ⌠ π/ω 
                      = ω/π ⎮ A² Cos(kx-ωt+φ) Sin(kx-ωt+φ)dt 
                            ⌡ 0 

                   π               π 
                R(--) = 0  and  ρ(--) = 0    
                  2ω              2ω 

Again, it is clear that R(0) = σ², the variance.   
 

Power Spectrum.  If x(t) is a time series made up of a sum of “m” number of cosines 
each with its own amplitude, Ai, frequency, ωi and phase θi, i.e. 

                         m 
   x(y,t) =  ∑ Ai Cos(kiy - ωit + φi) Eq 8 
                        i=1 

where we have also included a wavenumber, ki and distance, y.  Then the variance is 
twice the integral from 0 to T in the limit as T →∞, 

                               2  ⌠ T m 
              σ² = R(0) = lim  -  ⎮  ∑ Ai²Cos²(kiy - ωit + φi)dt 
                          T→∞ 2T ⌡ 0 1 

Now we can break the length T up in to n pieces, each π in length, and let the number of 
pieces go to infinity.   

                               n  ⌠ π m 
              σ² = R(0) = lim  -  ⎮   ∑ Ai² Cos²(kiy - ωit + φi)dt 
                          n→ ∞ nπ  ⌡ 0 1 

                           1 ⌠ π m 
               σ² = R(0) = - ⎮   ∑ Ai² Cos²( kiy - ωit + φi)dt 
                           π ⌡ 0 1 

                               m 
                         = 1/π ∑ Ai² π/2 
                              i=1 

                            m 
               σ² = R(0) =  ∑ ½Ai²   Eq 9 
                           i=1 
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So if x(t) can be regarded as being made up of a sum of sinusoids, its variance can be 
decomposed into components of average power, ½ Ai², at the various frequencies, ωi.  
Assuming a continuous distribution of frequencies, we obtain (without proof), 

                                 ⌠ ∞ 
                    σ² = R(0) =  ⎮ S(f)df Eq 10 
                                 ⌡ −∞ 

where S(f) is called the power spectrum (or variance spectrum).  Thus S(f) df is the 
measure of the average power or variance in the frequency band f - ½df to f + ½df – 
which really says that S is how the variance is distributed with frequency.  It can further 
be shown that  

                            ⌠ ∞ 
                    S(f) =  ⎮ R(τ) e-2πifτ dτ Eq 11 
                            ⌡ −∞ 

This can be recognized as the Fourier transform of the covariance function (see below for 
definition and discussion of the Fourier transform).  Then we must have 

                            ⌠ ∞ 
                    R(τ) =   ⎮ S(f) e2πifτ df Eq 12 
                            ⌡ −∞ 

with τ = 0, we again obtain equation 10.    

Cross-Covariance and Cross-Correlation.  Given two different sample functions, x and 
y, with means of µx and µy, the cross correlation and cross covariance function can be 
taken as discussed above.  We had from equation 6, 

                            ⌠ ∞  
                            ⎮ [x(t)-µ][x(t-τ)-µ]dt 
                            ⌡ −∞  
                    Rx(τ) = ------------------------ 
                                  ⌠ ∞  
                                  ⎮  dt 
                                  ⌡ −∞   

for one series.  For two series this just becomes  

                             ⌠ ∞   
                             ⎮ [x(t)-µx][y(t-τ)-µy]dt 
                             ⌡ −∞    
                    Rxy(τ) = ----------------------- Eq 13 
                                    ⌠ ∞     
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                                    ⎮  dt 
                                    ⌡ −∞      

Again, this can be normalized to give the cross-correlation, 

                                Rxy(τ) 
                    ρxy(t) = ------------- Eq 14 
                             √[Rx(0) Ry(0)] 

and again 

                    |ρxy| ≤ 1.0 

The cross-correlation of two sets of data describes the dependence of the values of one 
set of data on those of the other set as a function of lag, τ.  Note that now Rxy(τ) is not an 
even function and the maximum does not necessarily occur at τ = 0.  i.e. consider x = 
cosine and y = sine.  When τ = π/(2ω), they line up so you get a peak in ρ, so the 
maximum occurs at τ=π/(2ω) and not τ=0.  

The discrete covariance functions are,  

                           m  
                 Rxτ = 1/m ∑ [xi - µx][xi-τ - µx] Eq 15 
                          i=1 

                           m  
                 Rxyτ = 1/m ∑ [xi - µx][yi-τ - µy] Eq 16 
                          i=1 

The correlation is again the normalized covariance 

                           ρx = Rx/σ²  Eq 17 

                           ρxy = Rxy/√[Rx(0) Ry(0)] Eq 18 

 

*** Assignment #2 *** 

A. Create two sine waves of the same frequency and but slightly different initial phase.  Add in 
two different random noises (uniform and normal distribution), and calculate the Auto-
covariance and Auto-correlation functions for one of these series.  Hint: the MATLAB 
CONV (convolution) function does the multiplication and summing as required for the 
covariance and correlation.  The MATLAB COV function returns the variance of the vector, 
not the covariance.  If you use MATLAB’s covariance function you will get a different 
result.  Therefore, before using any of the MATLAB function, look at it and understand what 
it does.  This is the power of MATLAB - the documentation of a function is always available 
as an “m” file.  If you make your own, describe the results you get in terms of finite record 
length.   
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B. Calculate the Cross-covariance and Cross-correlation functions from these two series.  
Again describe the results.  Do you understand what the results are telling you and how you 
might use this tool in your research? 

C. Plot the original time series, the auto- and cross-correlation results.  Are the results what 
you expected from our discussion in class? 

Fourier Transforms 
Time-frequency space - In the case of a sine wave, everyone recognizes that it can be expressed 
by an amplitude and phase at a specific frequency, and that this representation is more 
representative of the geophysical process than expressing the sine wave as a function of time.  
i.e. instead of x(t) now we have a separate representation of the process which we express as 
X(f) where f is the frequency.  X(f) has an amplitude, A, and phase, θ, associated with each 
frequency, f.  However, it should be obvious that expressing a sine wave as a function of time or 
as a function of frequency are really just two ways of expressing the same thing.  Furthermore, it 
makes more physical sense to look at the sine wave as an amplitude and phase at a frequency 
than as a function of time.  We can extend this to say that our continuous process x(t) can be 
represented by a sum of sinusoids with a given amplitude and phase at each frequency.  This 
concept is now quite accepted, but in 1807 when Fourier first suggested that one could 
reconstruct exactly any function of time by an infinite sum of sinusoids, he astounded many 
contemporaries.  Fourier's theorem states that any function can be reconstructed from a sum of 
sinusoids and that the Fourier transform is exactly that sum.  Therefore, this says that we can 
express an observed process by a function of time, or by a Fourier transform of this as a function 
of frequency.  For our discrete series, we have a time series in “time space” or a Fourier series in 
“frequency space.” 

Fourier Transform  For our function x(t) we define its Fourier transform Z(f) as 

                            ⌠ ∞ 
                    Z(f) =  ⎮ x(t) e-2πift dt Eq 19 
                            ⌡ −∞ 

Where Z is generally a complex number.  It is made up of real and imaginary parts which are in 
reality the coefficients of the cosine and sine functions as 

                    Z(F) = A(f) + i B(f) 

                    x(t) = A(f) Cos(2πft) + B(f) Sin(2πft) 

Therefore, a series x which is made up of a sum of cosine waves only will have only a real part 
or real coefficients, (only A coefficients) and be an even function symmetric around 0.  Similarly 
a series x which is made of a sum of sine waves only, will have a Fourier transform which is 
only imaginary (only B coefficient) and be an odd function.  Depending on the normalization of 
the discrete Fourier transform, the coefficients A and B are the amplitudes of the cosine and sine 
waves which go to make up the time series x.   

The inverse Fourier transform of Z(f) is then defined by 
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                            ⌠ ∞ 
                    x(t) =  ⎮ Z(f) e2πift df Eq 20 
                            ⌡ −∞ 

These two expressions (equations 19 and 20) define a Fourier transform pair.  It is obvious that  
(1) Z(f) is a function of frequency,  
(2) Z(f) is an exact mathematical representation of x(t) (which was our original series as a 

function of time), and  
(3)  Z(f) is defined by the Fourier transform of x(t).   

Similarly x(t) is a representation of Z(f) as given by the inverse Fourier transform.  The Fourier 
transform is the way of getting from a function of time to a function of frequency.  
Mathematically the Fourier transform of a function x(t) exists if 

                     ⌠∞ 
                     ⎮ |x(t)|dt 
                     ⌡−∞ 

exists.  Some useful functions do not have transforms. 

                    x(t) = a non-zero constant 

                    x(t) = A Sin(2πft)                      

                    x(t) = 1 for t > 0                  

                           = 0 for t < 0 

However, the problem exists because these series are infinite in length.  A time series resulting 
from a geophysical process which is sampled for a finite period of time (or what we call “gated”) 
always has a Fourier transform.  Mathematically, we are saying that any gated function (a 
function which has a beginning and end and no infinite values) has a Fourier transform.  Since 
our observations start and stop in a finite time interval, they have Fourier transforms.   

Distance-wavenumber representation.  Usually one represents processes as a function of time 
and uses the Fourier transform to obtain a representation as a function of frequency.  Similarly 
one can define a Fourier transform pair which are functions of distance and wavenumber.  So 
variations as a function of space (as for example vertical CTD profiles of temperature and 
salinity in the Moonakis river) can be represented as a space series, or a wavenumber series.  The 
Fourier transform is the mechanism relating these two representations of the process.  For 
example, if we have an observed series such as a surface wave field of the form 

                    Y(x,t) = A Cos(kx - ωt) 

then we have two Fourier transforms, first as a wavenumber spectrum at one point in time 
(constant t) 

                            ⌠ ∞ 
                    Z(k) =  ⎮ Y(x) e-2πikx dx  
                            ⌡ −∞ 
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or as a frequency spectrum at one point in space( constant x) 

 

                            ⌠ ∞ 
                    Z(f) =  ⎮ Y(t) e-2πift dt  
                            ⌡ −∞ 

Fourier transform relationships - Let x(t) and Z(f) be a Fourier transform pair, and be complex 
functions of real variables.  We will use the shorthand 

                    x(t) ⊃ Z(f)   Eq 21A 

and also                                                  ____

                    Z(f) = x(t)   Eq 21B 

then,  

               x(-t) ⊃ Z(-f)    Eq 22 

               x*(-t) ⊃ Z*(-f)    Eq 23 

where * denotes the complex conjugate.  Note that if we have a complex number defined as 
follows,  
                         Z = R + i I,  

where                     i = √−1 

then                      Z* = R - i I 

So from Eq 19 and Eq 20, we can then say if 

        x(t) is even, x(t) = x(-t) ⊃ Z(f) = Z(-f) which is even 

        x(t) is odd, x(t) = -x(-t) ⊃ Z(f) = -Z(-f) which is odd 

        X(t) is real, x(t) = x*(-t) ⊃ Z(f) = Z*(-f) which is  
                                                  Hermitian 

        X(t) is imag. x(t) = -x*(-t) ⊃ Z(f) = -Z*(-f) which is 
                                               anti-hermitian 

Define X(f) and Y(f) as the Fourier transforms of x(t) and y(t) respectively, and let “a” be a 
scalar.  Some useful theorems concerning Fourier transform pairs are,   

               x(t) + y(t) ⊃ X(f) + Y(f)  additive       

               a x(t) ⊃ a X(f)                            

               x(t-a) ⊃ e-2πiaf X(f)    shift              
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               x(at) ⊃ 1/|a| X(f/a)         scale         

               ∂x(t)/∂t ⊃ 2πif X(f)     derivative        

               ⌠ ∞              ⌠ ∞ 
               ⎮ x(t)y*(t)dt =   ⎮ X(f)Y*(f)df   power        
               ⌡ −∞             ⌡ −∞ 

               ⌠ ∞            ⌠ ∞ 
               ⎮ |x(t)|²dt =   ⎮ |X(f)|²df                    
               ⌡ −∞           ⌡ −∞ 

We shall return to these relationships between transform pairs when we consider filtering.    
 

*** Assignment #3 *** 

A. Create a sinusoidal time series of amplitude 2.5 to which you have added a random 
component of amplitude 0.2.  Note that the length of you series should be a power of two. 

B.  Calculate and plot the Fourier transform (FFT) of your original series and your noisy 
series.  Does it agree with what you expect?  Note that MATLAB normalizes the transform 
by the length of series.  I like to normalize it so the FFT returns the amplitude of the sine or 
cosine.  

C. Create your own MATLAB function (which we will eventually evolve into the power 
spectrum and coherence function) with proper normalization.   

 
Convolution Product and Filters

Convolution Product:  To discuss filters we need to define the convolution product which we 
will use to represent the filtering process.  The convolution product of our series x(t) with some 
arbitrary set of weights w(t) is defined by the integral 

                            ⌠ ∞ 
                    Y(t) =  ⎮ w(τ) x(t-τ)dτ. Eq 24 
                            ⌡ −∞ 

We will abbreviate the convolution product by the symbol, *, and so  

               Y(t) = w(t) * x(t) = x(t) * w(t) Eq 25 

Then we can show that this product is 

             g * h = h * g        communitive Eq 26 

             f * (g * h) = (f * g) * h  associative Eq 27 

             f * (g + h) = f * g + f * h  distributive Eq 28 
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Convolution theorem  If we denote the Fourier transform of x(t) by X(f) or x ⊃ X, as defined in 
Eq 21, then the convolution theorem states that (remember f ⊃ F and g ⊃ G) 

                    f * g ⊃ F • G 

                    f * g = f • g 

or                                             Eq 29 

                    f * g ⊃ f • g.                      

This says that the Fourier transform of the convolution product of f and g is equal to the product 
of the Fourier transform of f and the Fourier transform of g.  Conversely, 

                    f • g = f * g   Eq 30 

and we also have 

                    f * g * h = f • g • h  Eq 31 

                    f * (f • h) = f • (g * h) Eq 32 

 A time series can be expressed either in the time domain or by its Fourier transform in the 
frequency domain.  The convolution theorem tells us that we can substitute multiplication in one 
domain for convolution in the other.  It is easier to visualize the product of two functions than 
the convolution, and it is often easier (quicker) to compute.  The convolution theorem tells us 
that if we express the time series x as a Fourier transform, and multiply this Fourier transform by 
the Fourier transform of w, then inverse transform, we will obtain the same result as doing the 
convolution of the filter w and the series x.  This is written  

                    w * x =  w • x   Eq 33 

 With the FFT (fast Fourier transform) algorithms available on digital computers, it is 
often faster (and hence cheaper) to transform, multiply, and inverse transform, rather than 
calculate the convolution.  (For information on the introduction of the FFT, see the IEEE Trans. 
Audio and Electroacoustics, June 1967, Vol AU15, vol2 Pg 43-93.) 

 The convolution process is the filtering process where a filter, w, is applied to the series, 
x.  If the time series x(t) is a discrete series (see section following on the sampling process for 
details on how the discrete series is created), xt, t=0,1,2,…,n, and the filter, wt, t=0,1,2,3,…,m, is 
defined over a different number of terms, m, but with the same sample interval, then the 
convolution product of the discrete series can be represented as the finite sum 

                         m 
                    Yt = ∑ wτ xt-τ for t = 0,1,2,…n+m 
                        τ=0 
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This will only have meaning if we define  

                    xt = 0 ; t=n+1,n+2,..,n+m 
                    wt = 0 ; t=m+1,m+2,..,n+m 

For example, consider the filter to be a triangular filter represented by a set of 5 weights, wt =  
{0, 0.25, 0.5, 0.25, 0}, and let the series be represented by a set of numbers, xt = {1.2, 2.2, 1.6, 
1.8, 1.2, 1.6, 1.4}.  Note that the filter series weights sum to one.  This is so that the values of the 
series will have the same value after the filter is applied.  Then n=6 and m=4, and 

                    Y0 = 0.0 + 0.55 + 0.8 + 0.45 + 0.0 = 1.8 

                    Y1 = 0.0 + 0.4 + 0.9 + 0.3 + 0.0 = 1.6 

                    Y2 = 0.0 +.0.45 + 0.6 + 0.4 + 0.0 = 1.45 

Note that the filtered series is shorter than the original series by m-1=3 terms so the filtered 
series is now n-(m-1) = 3 terms.  It is obvious that x * w = w * x since the sum is symmetric. 
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Figure 3.  The example given in the text plotted.   
 

Filters and filtering:  Filters are selective devices which are used to discriminate and reduce 
time series.  In a broad sense, the world, our experiment, the sensors, recorder, and data analysis 
are really filters which shift and reduce the data.  We begin by considering some simple filters 
such as would be used in data reduction.  Consider a filter as a box with an input x(t) and an 
output y(t) 

                    x(t) →  F  → y(t) 
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We shall write the filtering operation as x(t) => y(t). 

Time Invariant Linear Filters.  We want well behaved filters which will enhance some 
frequencies in a time series and suppress others.  This type of filter is invariant in time, 
that is,  

                    if   x(t) => y(t) 

                                           Eq 34 

                    then  x(t+τ) => y(t+τ) for all τ. 

and is linear, that is 

                    if  x1(t) => y1(t) 

                    and  x2(t) => y2(t) Eq 35 

                    then x1(t)+x2(t) => y1(t)+y2(t)    

For any constant, a, it follows that  

                    a x(t) => a y(t) Eq 36 

A time invariant, linear filter has the important property that it does not confuse 
frequencies (no non-linearities).  A sinusoidal input produces a sinusoidal output of the 
same frequency, that is 

                    A Cos(kx-ωt+φ) => B Cos(kx-ωt+θ) 

where A, B, ω and θ are constant in time.  The filter has altered the amplitude from A to 
B (a gain of B/A) and altered the phase by θ - φ, but the frequency of the sinusoid is 
unchanged.  In order to describe the response of a filter, let us observe what it does to an 
ideal input.  We want to consider a complex filter so, consider two parallel filters 

                 A1 Cos(ωt) => y1(t) 

                 A2 Sin(ωt) => y2(t) 

and regard the first as the real and the second as the imaginary part of this complex filter, 
then we can rewrite the two inputs as one and linearity gives 

             A1 Cos(ωt) + i A2 Sin(ωt) => y1(t) + i y2(t) 

This can be written, 

                    A eiω(t+τ) => y(t+τ) Eq 37 

where the phase is written as a frequency, ω, times a constant, τ.  This can be broken up 
into the sinusoidal part and a phase part as  
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                    A eiω(t+τ) = A eiωt eiωτ => y(τ) eiωt

where exp(iωt) is regarded as a multiplier.  For τ = 0, or zero phase shift, the above 
relationship gives 

                    y(t) = y(0) eiωt  Eq 38   

Where we now have the output as an initial amplitude which is expressed as y(0) and the 
sinusoidal time varying part expressed as the exponential, so that 

                    A ei(ωt) => y(o) ei(ωt+θ)  Eq 39 

The real part of Eq 39 is 

                  A Cos(ωt+θ) => |y(0)| Cos(ωt+θ+φ) Eq 40 

                                   B Cos(ωt+ψ) 

where B = |y(0)|, ψ = θ + φ, y(0) = |y(0)|exp(iφ). 

We characterize the response of a filter (as above) by its transfer function, L, by use of 
Eq 38 

                 L(ω) = y(0)/A   Eq 41 

which is the ratio of the output to the input at a given frequency ω .  L(ω) is generally 
complex, it has a real and imaginary part, which can also be written as an amplitude gain 
and a phase shift.  In terms of the real input Eq 40 

                 L(ω) = B/A eiφ = B(ω)/A(ω) eiφ(ω)

so that L(ω) is a complex number whose modulus is the amplitude gain (B/A) and whose 
argument is the phase shift (φ) produced by the real input at each frequency ω.  A 
property of L(ω) is that 

                    L(ω) = L(-ω)*   Eq 42 

 This transfer function, L(ω), characterizes how a filter responds to a sharp spike in 
frequency (a sinusoid).  This is done in the laboratory, but applying a sine wave and observing 
the output voltage amplitude and phase change.  An alternate description can be made by 
specifying its response to a spike or impulse in time.  Let δ(t) represent a unit pulse in time.  This 
pulse is narrow compared with the resolving power of our sensors.  For example take the gate 
function 

                    Π = 1  for  |t| ≤ ½  
                    Π = 0  for  |t| > ½  Eq 43 
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This represents an impulse when written as  

                    1/τ Π(t/τ) = δτ(t) 

as τ goes to 0, δτ(t) becomes arbitrary sharp (centered near t=0).  We have 

                      ⌠ ∞          ⌠ ∞ 
                      ⎮ δτdt = lim  ⎮ (1/τ)Π (t/τ)dt = 1 Eq 44 
                      ⌡ −∞    τ→0  ⌡ −∞ 

and as Π is non zero between -½τ and ½τ,  

                              ⌠ ½τ 
                       = lim  ⎮ (1/τ)Π(t/τ)dt = 1 Eq 44 
                         τ→0 ⌡ −½τ 
 

It can be shown by the limiting process that 

                       ⌠ ∞ 
                       ⎮ δ(t) F(t) dt = F(0) 
                       ⌡ −∞ 

and by the shifting property of δ(t) 

                       ⌠ ∞ 
                       ⎮ δ(t-a) F(t) dt = F(a). 
                       ⌡ −∞ 

If δ(t) => l(t), we say that the impulse δ(t) produces an impulse response, l(t). 

 An input which can be expressed as a linear combination of impulses, has an output 
which is described by the impulse response function. 

                  m              m 
                  ∑ Ciδ(t-ti) => ∑ Cil(t-ti) 
                 i=1            i=1 

Assuming that our impulses are infinitely close, we can go to the integral representation, and 
make the input exactly any input function of time.   

 Hence, we can express a filter by either its response to a sum of sinusoids (in the 
frequency domain, L(ω)) or by its response to a sum of impulse (in the time domain, l(t)).  
This can be expressed, 

               if  eiωt => L(ω)eiωt
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               then       Eq 45 

                   ⌠ ∞             ⌠ ∞ 
            x(t) = ⎮ g(ω)eiωtdω  >  ⎮ g(ω)L(ω)eiωtdω = y(t) 
                   ⌡ −∞            ⌡ −∞  

where g(ω) is the Fourier transform of x(t), so that x(t) is the inverse Fourier transform.  This 
results is an integral representation of the transform, which is the amplitude and phase of the 
sinusoids at each frequency which add up to the initial function of time, which are now shifted in 
amplitude and phase by the complex response function, L(ω).  Now we also can write,  

               δ(t) => l(t) 

                                             Eq 46 

                       ⌠ ∞               ⌠ ∞ 
          then x(t) =  ⎮ x(t)δ(t-τ)dτ =>  ⎮ x(τ)l(t-τ)dτ = y(t) 
                       ⌡ −∞              ⌡ −∞  

Therefore there are two ways of describing the response of a filter, as its frequency response 
function, L(ω) or as its impulse response function, l(t).  It should be obvious that these are just 
Fourier transforms of each other,   

               L(ω) ⊃ l(t) 

and 

               l(t) ⊃ L(ω). 

Examples of filters 

1. The do-nothing filter, x(t) => x(t) 

                  L(ω) = 1 (e.g. amplitude multiplied by 1 & phase shifted by 0º) 
             and  l(t) = δ(t) (e.g. you get out what you put in) 

2. The lag filter, x(t) => x(t-τ).  The output is simply a delayed version of the input. 

                  L(ω) = eiωτ

                  l(t) = δ(t-τ) 

3. Consider x(t) =>  y(t) = x²(t).  An input consisting of two different frequencies 
produces sums, and difference frequencies of the inputs.  These are called distortion 
(harmonic, intermodulation) and are the result of squaring a linear system.  This is a bad 
filter to have to describe based on the output.   

4. A time variant filter.  If x(t) => g(t)x(t) where g(t) is any non-constant function of time.  
Such filters are commonly used on time series.  Consider the gate function or “Boxcar,” 
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g(t) = Π(t).  Since observations must be started and stopped, multiplication by Π(t) is 
unavoidable.  We generally scale so the filter is Π(t/T) where the record length = T, so 
the resulting frequency confusion does not negate the experiment. 
 

Let us more fully explore the gate function, II(t), as a filter.  It has a Fourier transform 

                                ⌠ ∞ 
                      Π(t)  ⊃   ⎮ Π(t) Cos(2πft)dt 
                                ⌡ −∞ 

where we need only to use the Cosine part of the transform since the gate function is an even 
function.  Since the gate function is zero outside the interval |1/2|, the limits of the integral 
become plus and minus 1/2.  We can further simplify this by noting that an even function is 
twice its value from 0 to 1/2.  Therefore, 

                                  2            |½ 
                       Π(t)  ⊃   --- Sin(2πft) |   
                                 2πf           |0 

                                 Sin(πf) 
                      Π(t)  ⊃   ------- ≡ Sinc(f) 
                                    πf 

Applying this filter by multiplication in the time domain (our gating process) is the same 
as convolving the Fourier transform of your observations with the sinc function.   

            X(t) • Π(t) ⊃  X(f)* Sinc(f)   

This often produces problems and must be dealt with properly in the design and sampling 
of the experiment.  Therefore, filters are actually applied to the data in the process of sampling, 
and their effects must be known.  To study these effects we must examine the sampling process.  
 

*** Assignment #4 *** 

A. Create a sine wave with noise as we did in assignment 3 and calculate the Fourier 
coefficients for your sine wave.  Is the energy at the frequency it is supposed to be?  Is 
your amplitude and phase properly represented in the Fourier coefficients?  

C. Create a 5-point triangular filter of weights 0.0, 0.25, 0.50, 0.25, 0.0.  To be 
normalized as a low pass filter, the weights must sum to one.  Apply your triangular 
filter to your sine wave with noise.   

D. Plot the initial and filtered series.  Does the filter remove some of the random noise? 

E. Using FFT, transform the filter weights (cosine transform or real part since the filter 
weights are an even function) to get the filter gain (filter frequency response function).  
Make a log-log plot of your filter's frequency response function.  Does it look 
reasonable to you?  Discuss.   

 23




