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Problem 1: Wanda’s world

a) The geometry for this problem is shown in Figure 1. For part (a), the object
(Wanda) is located inside the bowl and we are interested to find where the image is
formed. We start by using the matrix formulation to analyze the given system,
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To find the imaging condition, we note that all the rays, regardless of their departure
angle a,, arrive at the image point z; (i.e. dz;/0a, = 0),
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We see that the image is formed at the center of the bowl and is virtual. Using this

result in equation 1,
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The lateral magnification is,

and therefore, the image is erect.

b) For this part, the object (Olive) is located outside the bowl and we are interested to
find where the image is formed. Again, we solve this part using the matrix formulation,
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From the imaging condition (dz;/0a, = 0), we solve for s,
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The lateral magnification is (for an on-axis ray, a, = 0),

T s'(n—1)
M = — = 1 e
L To nR (7)
_ 4 snR(n—1) L R

(s(n—1)— R)nR s(n—1)— R

From equations 6 and 7, the following cases arise:

1. If R> s(n—1) — ¢’ <0, the image is virtual, erect and is located at a distance ||
outside the bowl.

2. If R > s(n—1) — & > 0, the image is real, inverted and is located at a distance
|§’| inside the bowl.

c) If we were to consider the glass container of thickness ¢ as well as the inner, R;, and
outer, R, radii, the matrix formulation becomes,
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For the case of uniform glass: Ry = Ry = R. The imaging condition is,
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Figure 1: Wanda’s world problem
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where,
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Comparing equations 10 and 6, we see that in order to neglect the aquarium walls we
require that §, << 1,
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Problem 2: Ball lens magnifier
a) In class we derived the composite matrix for a thick lens surrounded by air and
is given by,

Mipicr =

For a ball lens magnifier, the lens thickness and radii are: d = 2R, and Ry = —Ry = R.
Using these values on equation 13 we get,
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so the EFL is,
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b) To calculate the BFL we consider an on-axis object source at infinity (i.e. s, = 00,
and a, = 0) which focuses by the ball lens at the optical axis (z; = 0). Using the
matrix formulation,
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By symmetry, the FFL = BFL. Since 1 < n < 4/3, BFL > 0. The location of the
2nd principal plane respect to the back of the lens is,

2opp = BFL — EFL = —R. (18)

Again, by symmetry the location of the 1st principal plane is also at the center of the
sphere as shown in Figure 2.

c) As shown in Figure 3, an object is located at a distance d to the left of the back
surface of the ball lens, where

d:Rﬂ;jﬁ. (19)

The distance of the object to the 1st principal plane is,
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Figure 2: Location of principal planes: ball lens magnifier.
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Figure 3: Imaging with a ball lens magnifier.

Since the object is located between the principal plane and the focal point, as indicated
by equation 20, the image formed is wvirtual. To find the image position we use the
imaging condition,
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so the image is formed to the left of the 2nd principal plane (i.e. to the left of the
center of the ball lens).

d) The lateral magnification is,
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and therefore, the image is virtual and erect.

e) The aperture stop (AS) is given by the finite size of the ball lens and thus is located
at the center of the lens. The numerical aperture, N A, is,

NA =ng,sina = o = tan a,

where we have used the parazial approximation and « is the angle formed by an on-axis
point object and the edge of the AS,
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f) By observing the object through the lens, our eye’s lens is effectively imaging the
image generated by the sphere. So, if our eye is located at a distance L behind the
lens, the new object distance is s, = L + R + EF L. The crystalline lens of the eye
accomodates by changing the eye’s focal length f in order to still satisfy a positive
image distance of s;=5cm. From the imaging condition, we find that the resulting
focal length after accomodation is,
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To be able to see an object at a relaxed state (i.e. without accomodation of the eye),
the image generated by the spherical lens should be at infinity, so the object should be
placed at a distance equal to EF'L to the left of the 1st principal plane.

Problem 3: Telephoto lens design

a) For this problem, we are given two requirements of a telephoto lens system: i)
for an object at infinity, « = 1072 radians and h = 5 x 1072 (cm); ii) The location of
the real image produced by the system. The telephoto lens system is shown in Figure
4. By inspection, we see that the first lens, L, focuses the object at infinity to a point
of height z; = af, at a distance of f to its right. This image point now acts as the
object source for the second lens, Ly. The object and image distances are,

s, = d—f, and (25)

We use the equation for the lateral magnification to find the separation distance d,
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We use the imaging condition to find the focal length of L2,
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b) Referring to Figure 5, we see that,

(26)



Znu‘ PP .I’_L _f LZ, '5/8f

/2

o

Figure 5: Locating 2nd principal plane.
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Figure 6: Locating 1st principal plane.
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OF = 5f—3f=2f.
So the 2nd principal plane is located to the left of L1 at a distance of 2f = 20cm.

To find the 1st principal plane, we reverse the propagation direction of the rays and
consider a point at infinity coming from the right as shown in Figure 6. The parallel
rays will have a virtual image at point G produced by L2. This point image then acts
as a point object for L1 and we use the imaging condition to find the location of the
image (point D),



From Figure 6 we see that,
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So the 1st principal plane is located to the left of L1 at a distance of 4f = 40cm.

c¢) From part (b) we know that,

EFL = DO = 5f = 50cm. (31)

Or even from the problem we can know the E'FL without any calculations: because
the parallel ray bundle with angle a passing through the system will focus at the focal
plane with height A, so the effective focal length is EFL = h/a = 5f.

d) This part can be answered by using only the principal planes and applying the

imaging condition,
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The image plane is located to the right of L1 at a distance of 20/3- f —2f = 14/3- f =

46.67cm.

An alternative way to solve this problem is by using the matrix formulation,
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Because all the parallel rays with angle a will focus at the point at the image plane
with h = baf, .. is independent of x,,
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which is consistent with the result of equation 26.

Problem 4: Microscope design

a) The geometry of this problem is shown in Figure 7. To let the human’s unac-
commodated eye to focus the image on the observer’s retina, L3 should form an image
at infinity (i.e. for a given point in the object the corresponding output is an off-axis
parallel ray bundle). The first lens, L1, forms an intermediate image at the S2 plane,
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S, = 10.625mm.
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Figure 7: Microscope design problem.

b) If we place a small object at s, in front of L1, the instrument acts as a microscope.
The magnifying power, M P, is the ratio of the image size formed on the human’s retina
when using the instrument and the image size when viewed with the naked eye,

MP = M;, Mg, (39)
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where, M}, is the lateral magnification of the objective (L1) and M, is the angular
magnification of the eyepiece (L3).
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