MASSACHUSETTS INSTITUTE OF TECHNOLOGY

2.71 Optics Spring ’09
Solutions to Problem Set #4
Due Wednesday, April 1, 2009

Problem 1: Particle in quadratic and linear potential
a) Consider a particle whose Hamiltonian is given by,

_ piHp

1
H(qy, qx5pa, D2) = 2m/-+§kﬁ-%mg%, (1)

where m is the particle mass, k is the spring constant, and ¢ is a constant with the
units of accelerations. We begin by writing the set of Hamiltonian equations in the
same way as done in the class Lecture 9, p. 22,

% = —gi = —kq, — mg, (4)
dgtz _ _gf 0. (5)

b) Asindicated by equation 5, the axial momentum is conserved, p,(t) = p,(0) =constant,
and we solve for ¢,(t) from equation 3,
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To find the second-order differential equation for the lateral position, we take the time
derivative on both sides of equation 2,
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We now solve equation 7 with the initial conditions, ¢.(t = 0) = qo, ¢.(t = 0) = 0,

px(t = O) = Do, and pz(t = O) = Pzo0,
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where C' is the particular solution. Substituting,
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To find the constants A and B we use the initial conditions,
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The final solution is,
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c¢) Figure 1 shows an example of a physical system that conforms to this model con-

sisting of a vertical spring on a cart with frictionless horizontal motion.

d) To verify if the Hamiltonian is conserved, we take its time derivative,
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Figure 1: Mechanical system of problem 1.

Problem 2: Quadratic GRIN
a) Consider the quadratic GRIN profile that is most often implemented in practice,

(8%
nlw) =nd - Sab. (14)

The geometry of this problem is shown in Figure 2. The 6 x 6 set of Hamiltonian
equations that we saw in class can be simplified to a 4 x 4 set of ordinary differential
equations known as Screen Hamiltonian equations. The Screen Hamiltonian equations
describe the evolution of the intersection of the ray path with the screens, that are
perpendicular to the optical axis, as z advances. As shown in Figure 2, different points
in the ray trajectory (s, ss, S3,---) have been projected to their corresponding axial
coordinate (z1, 2, 23, - - -+ ) changing the parameterization of the ray from [q(s), p(s)] to
[a(2), p(z)].The Screen Hamiltonian equations are given by,

dgz _ Oh  dpz _ _ Oh
dz Bpm’ dz 8‘].167
day _ Oh  dpy _ _ Oh
dz = Opy’ dz = Oqy’

where,

W4z, Gy> %3 Pry Py) = —\/nz(q) - (P2 +7}),

is called the Screen Hamiltonian. For the case of the quadratic GRIN profile of equation
14, the Screen Hamiltonian becomes,

b= (- e) (15

1
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Figure 2: Screen Hamiltonian.

Figure 3 shows the ray position, ¢,(2), as a function of z for a case where the index is
modulated elliptically,

n(z) = /ng — kg, (16)
with the following parameters: py = 0, ng = 1.5, k = 0.1, ¢o = [-10,10], and
0 <z <25.

b) As you can see from Figure 3, the elliptical GRIN lens doesn’t focus the incident
parallel ray bundle satisfactory as it suffers a large degree of spherical aberration.

¢) Now we consider the quadratic GRIN lens of equation 14. To modify the file, we
take the derivative of the Screen Hamiltonian respect to the lateral component of the
position vector,

oh _ 1 —8ndagq, + 4a’¢’ (17)
94y 4\/4n¢ — danq? + a2t — 4pt
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We use equation 17 to edit the sgradh_quadratic_hw.m function. Figure 4 shows a
comparison of the ray tracing of the quadratic GRIN lens (blue-solid line) and the
elliptical GRIN lens (red-dashed line). As shown in the figure, the quadratic GRIN
lens also suffers from spherical aberrations that affect the focusing quality.

d) As indicated by equation 14, the refractive index only varies as function of x so that
On/0z = 0; therefore, the Screen Hamiltonian is conserved.

Problem 3: Complex arithmetic
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Figure 3: Elliptical GRIN lens.
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Figure 4: Comparison of quadratic and elliptical GRIN lenses.



a) The goal of this problem is to remind you of some basic complex arithmetic. Let
21 =344, 2 = 1 —i, z3 = 5’5, and z; = 5e'5. The magnitude and angle of a
complex number is given by,

2] = Vit (18)

1
/z = arctan?2 (—),
r

where r is the real part and 7 is the imaginary part of the complex number z and
arctan 2 is the four quadrant tangent function. A complex number written in polar
form can be expanded as,

z = |z]e*? (19)

= |z|cosf L isinb,

where § = /z. For the complex numbers given in this problem: |z1| = 5, |z = 1.4142,
23] = |24] =B, Lz1 = 0.9273, /29 = —0.7854, /z3 = 7/3, and /zy = 47/3.

b) £/ — 2z = —2.2143, /25 = 0.7854, / — z3 = —27/3, and /z; = —47/3.
c)z1+20=4+143, 2 + 20 =4+15, z3+ 24 =0, and z; — 2z = 5.5 —10.33.

d) |z120] = 7.07, |z324] = 25, |23/ 2] = 1,
lz3/24 = —m,and /\/z5 = 7/6.

\/2_3} = /B, L2129 = 0.1419, /2524 = —7/3,

. . T . ; ;AT . i T
e) z1+ €™ =244, ze's =141, z3¢'™ =5e'3, and Vz4e7T = V5e's.

Problem 4: Plane waves and phasor representations
a) We begin by writing the general scalar form of a propagating plane wave in a

phasor representation,
flx,y,2,t) = AeTe ™, (20)

where r is the position vector, k is the wave vector with magnitude |k| = 27/, w is the
angular frequency and A is the amplitude of the wave. For a plane wave propagating
at an angle of 30° relative to the Z axis on the xz-plane, the wave vector becomes,

o sin 30°
k= Y 0 . (21)
cos 30°

For a wavelength A\ = 1ym, the wave number is, k = |k| = 6.28 x 10°m™'. The angular
frequency is related to the wavelength by means of the dispersion relation,

c = A= A\7w (22)
c
= — =4. 1013 ~sect.
= w o 77 x 10™rad - sec



Figure 5: Plane wave propagating at 30° in the xz-plane.

The phasor representation of the wave is,

fi(z,y,2,t) = Aexp [ik (sin 30°z + cos 30°z)] exp(—iwt), (23)
and the space-time representation is,

fi(z,y, z,t) = Acos[k (sin 30°z 4 cos 30°z) — wt]. (24)

b) Similar to part (a), the phasor representation of a plane wave propagating at an
angle of 60° relative to the optical axis on the yz-plane is,

fo(z,y, z,t) = Aexp [ik (sin 60°y + cos 60°2)] exp(—iwt), (25)
and the space-time representation is,

fa(z,y, z,t) = Acos[k (sin 60°y + cos 60°z) — wt]. (26)

c¢) Figures 5 and 6 show the waves for fi(z,y,z =0,t =0) and fo(z,y,2z = 0,t = 0).
d) The plane z = 0 is illuminated by the superposition of the two waves, f; and f,

and we are interested in plotting the evolution of the resulting wave received at points
A7 B? C? D? E?

o (b 5) (ot ) (-i30) (-t

The evolution of the resulting wave is shown in Figure 7. As shown in this figure, at
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Figure 6: Plane wave propagating at 60° in the xz-plane.

point A the waves f; and fy are in phase so they interfere constructively. In contrast,
at point B, the waves are out-of-phase and they interfere destructively. An interference
pattern is produced at the plane z = 0 as a result of the superposition of both waves.

Problem 5: Wave superposition
a) Consider the following two waves,

2T x?
f1($7zat) = bcos (ﬁ |:Z + Z:| - 27T10t) 9 (27)

B 27 (x — 5)? T
fa(z,z,t) = bcos (ﬁ [z + T] — 2710t + §> :

As described in the class (lecture 13, p. 6),the waves of equation 27 are paraxial ap-
proximations of spherical waves. For the case of fi, the originating point source is
centered at (0,0), and the additional parameters are: A =5, A = 17, v = 10. The
second wave, fo, shares the same parameters as f;; however, the originating point souce
is shifted at x5 = 5 and the wave is phase shifted by ¢ = 7/3.

b) The phase velocity is given by v, = w/k. For the two waves of equation 27 their
corresponding phase velocities are,

Up1 = Vpo = Av = 170. (28)
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Figure 7: Wave superposition.




c) Now we are interested in computing the coherent superposition of the two waves,

flz,z,t) = fi(z, 2,t) + folz, 2, 1) (29)

— Slcos (X + 5 il QP
= COS 17 z T

2 (x—5)2 7r
— | — 2710t + =
+cos<17{ + 7 } 7T0+3)]

= 5cos (¢) + cos (¢y)]

)

12722 + 6mx? — 20407tz — 30w + 757 + 177z
= 10[cos

102z

30mx — 75m — 177z ]

- COS .
102z

d) The two waves in phasor notation are,

2 2
fo(z,2,t) = 5exp< 17; [ + ;—] —i27T10t) , (30)

(x —5)*

2z

2
fo(x,2,t) = Sexp (ZT;T {z+ ] - i27r1()t—|—zg) .

The coherent superposition of the two waves is,

oz, 2,t) = falz,z,t)+ fre(z, 2,t) (31)

= bHlexp ( [ 1 — 227r10t>
(x —5) ) T
+exp ( { } — 12110t + zg)]
2
= b5lexp ( [ —1 — 227r10t>
2z
+e z+ v i2m10t | e 27T 596—1—25 il ]
X —| = X —+ — =
T ST PUT7 722 " 22 '3
2 _
= bexp(ig,) 1+COS( [ > 5x1+z)

3
Yis 27 |25 — bx n s ]
sin | 77 | 72; 3

= 5cos(¢y) + isin(dy)] [1 + cos(¢s) + isin(ds)] .

Tty :IS’ :|2$ :I‘;f
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If we take the real part of equation 31,

flz,2,t) = Re{f(z,2,1)} (32)
= 5[cos(¢,) + cos(¢,) cos(¢s) — sin(¢, ) sin(¢s)]
= 5[cos(¢;) + cos(d; + b3)]
= 5lcos(¢) + cos(¢,)],

which is the same as in equation 29.

Problem 6: Dispersive waves
a) Recall frrom the class (Lecture 13, p. 7) that the dispersion relation for a metallic

waveguide is,
() o= () @

a C

where for this problem w = 1.5 x 10'°rad/sec, a = 1ym and m = 1 since only one mode
is allowed. Solving for k,

= -0 o
= 3.8898 x 10°m™*

2
= Ay = % — 1.6153 x 10~ %m.

Comparing equation 34 with the free space wavelength,

2mce

s = — = 1.2566 x 10~ m. (35)

The temporal period is,

2
T =" — 4188 fsec. (36)
w

Since in the problem statement we are told that the amplitude of the wave is maximum
at a distance 0.4pm inside the waveguide at ¢ = 0, that is 0.4um~ \,,/4, the wave
is initially phase advanced by /2. Figure 8 shows the evolution of the wave at times
1.05fsec, 2.1fsec and 3.15fsec after the wave is launched.

b) As discussed in part (a), the distance traveled by a point of constant phase on the

wavefront after 4.2 fsec (temporal period) equals A,,.The distance traveled by the same
point for a wave propagating in free space equals Ay;.
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Figure 8: Single mode inside a metallic waveguide.

c¢) The group velocity is given by,

vy = 2 (37)

ok
o (o )

ey (%F)
N ok
_ 2k 7k
ez er @
since k is given by equation 34,
V() - ()
v, = - (38)
mmc\ 2
= oyt- ( aw ) '

Problem 7: Schroedinger’s Equation

a) The equation describing the wavepacket associated with a particle in Quantum
Mechanics is,

PV PV PY 2mov

02 "o T o T T T o

(39)

where, m is the particle mass, h = h/27 and h is Planck’s constant. Consider a trial
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Figure 9: Dispersion diagram.

solution of the form,

U(zr,y,z,t) = elkTemiwt (40)
ov
E = —ZW\IJ

Since ¢ = exp(im/2), the term 0¥ /0t should be 7/2 phase shifted with respect to the
Laplacian, V2.

b) We compute the dispersion relation using the plane wave solution of equation 40,

2
—(2 KK = - (41)
2mw
k> = ==,
I

An example of a dispersion diagram is shown in Figure 9.
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