MASSACHUSETTS INSTITUTE OF TECHNOLOGY

2.710 Optics Spring ’09
Solutions to Problem Set #7 Due Wednesday, Apr. 22, 2009

Problem 1: Zernicke phase mask For problem 1, general formulations for the
4-f system are presented here. As shown in Fig. A in problem 1, z, z”, and 2/
are the lateral coordinates at the input, Fourier, and output plane, respectively. The
complex transparencies at the input and Fourier plane are denoted by ¢;(z) and to(z”),
respectively. With on—axis plane illumination, we can formulate as follows:

1. field immediately after T1: ¢;(z)

2. field immediately before T2: § [t1(x)]

"
2z’

Af1

3. field immediately after T2: to(2”)§ [t1(z)] _ o

xr—

4. field at the image plane: § [tg(:v”)g [tl(x)}m_ﬂu]
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where we use § [§ [g(x)]] = g(—x). Note that the field at the image plane is a convo-
lution of the scaled object field and the Fourier transform of the pupil function, where
the F'T of the pupil is the point spread function of the system.

Next, it is important to model correctly the transparencies of the gratings. For T,
the phase delay caused by grooves is 2%(n — 1)d;, where d; is the height of the groove

)
(1 pm), and the phase profile is shown in Fig. 1. Hence, the complex transparency of
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Figure 1: phase profile of the grating 77 (x)



T is written as

t1(x) = 9@ = exp {127”(71 ~1)d; [rect (Ail) ® comb (A%)} } , 2)

where A; =5 pm and A; = 10 um. Hence,

h(z) = { em(=—1) if || < Ay/2,

1 if A1/2 <z < Ay/20r —Ay/2 <a<—A1/2, (3)

for |z| < As/2. Using the Fourier series (. t;(z) is periodic) and A = Ay = 24,, we
find the Fourier series coefficients as
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For ¢ =0, co = % [ti(z)dz = 0.
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Thus, ¢, = —sinc (%) + d(q); all even orders disappear and only odd orders survive.

For the grating Ts, the phase profile is shown in Fig. 2.
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Figure 2: complex transparency of the grating T5(z")
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Figure 3: the field immediately before T5.

The complex transparency can be written as

i = o () e () v (). 0

1.a) the intensity immediately after T1 is 1 because [t1(z)|> = 1. Since T1 is a pure
phase object and there is no intensity variation.

1.b) the field immediately before T2 can be computed from the Fourier series co-
efficients of ¢1(z). Since the period of T} is A, the diffraction angle of the order ¢ is
0y = q%, and the diffraction order ¢ is focused at f10, on the Fourier plane. Hence, the
field immediately before T5 is

o0

> (8(q) — sinc (¢/2)) 5 (%‘” - Q%> = > (5(g) —sinc(¢/2)) 6 (" — g em). (6)

g=—00 gq=—0o0

l.c) Since b (the width of the grating 75) is 7 cm, the diffraction orders passing
through the grating T, are ¢ = —3,—1,+1,+3, where —1 and +1 orders get phase
delay of 7/2. The field immediately after the grating is

~sinc (g) [6(z" — 3) + 8(2" + 3)] — e sinc (%) 62" — 1) + 8" +1)].  (7)

The field at the image plane is the Fourier transform of the field immediately after
the grating T5, which is computed as

3 [—smc (g) 6(a" — 3) + 8(2" + 3)] — dsinc (%) 5" — 1)+ 8(2" + 1)]} _
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The intensity at the image plane is

I(2) ~ 'é cos (27”(0.3)3;) ~icos (27”(0.1):5)

%(2032 (?(0.3#) + cos® <277T(0-1)3€) (9)
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Figure 4: intensity pattern at the image plane

Figure 4 shows the intensity pattern at the image plane with and without the phase
mask.

1.d) In Fig. 4, the phase mask introduces more dramatic intensity contrast, whose
frequency is proportional to the twice of the spatial frequency of the object grating. In
Fig. 4(b), there is a intensity variation but the contrast is smaller. This phase mask is
particularly useful for imaging phase object because phase variation is converted into
intensity variation.

l.e) In Fig. 4(a), although all the orders are recovered, the field signal is not
identical as the input field (the field immediately after T1). Hence, we may still able
to observe some intensity variation although the contrast could be very limited (but
still better than the case without the phase mask).

1.f) If @ = 0.5 cm, then the first order does not get the phase delay, and all the
orders are imaged at the image plane. The output field is identical to the input field
(the field immediately after T1); no intensity variation is produced. Intuitively, in
Fig. 4(b), as all the order contribute, the valleys of the intensity pattern is filled and
eventually uniform intensity pattern is produced.



Another solution with an alternative definition of the grating T1
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Problem 2: Signum phase mask

2.a) The phase shift induced by the mask is

2w 2w
=7 1) =
A s(n=1) 1 pm

(1 pm)(0.5) = . (10)

Hence, the pupil function can be written as

P(2") = rect (%) + rect (%) e, (11)

ATF is a scaled pupil function, which is found to be

_ ~ rect (M a/4 Muta/dy
H(u) = P(Afu) = rect ( /2 ) + rect ( a2 ) e, (12)
|ATF(u)] LATF(u)
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(a) magnitude (b) phase

Figure 5: ATF of the system

Note that a/(2Af) = 55 pm ™.
2.b) The magnitude and phase of the transparency are shown as below.
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Figure 6: Transparency

2.c) The optical field at the image plane can be obtained from two ways: 1) direct
forward computation or 2) frequency analysis.



[1] direct forward computation: The incident field to the Fourier plane is

x 1 (2" 1 1 (2" 1 1., 1.,
5 [cos (27Tx>i| Y = 55 (v K) +§5 <v + K) = 55(x 5 mm)+§5(x +5 mm).
(13)
Since the width of the pupil is 10 mm, both delta functions pass through the pupil
with a phase delay. The field immediately after the phase mask is

1 1 1 1

—§(z" —5)+€e"=6(z" +5). = =6(z" = 5) — =d(2" +5). (14)
2 2 2 2

The field at the image plane is

2 z/ 22 x

Xf A

1 / /
— isin (Qﬂ'g;—f) — isin (27r20xﬂm) . (15)

[2] frequency analysis: The Fourier transform of the output field is a multiplication
of the Fourier transform of the input field and the ATF. Since the Fourier transform

of the input signal is %5 (u — -1 ) + %5 (u + ;), the F'T of the output field is

3 15@”-5)-%5@’45)} _iF {i,é(m"—5)—2li(5(:c"+5)} |

<)

20 pm 20 pm
1 1 1 1
=0 u— — =0 16
2 <u 20um> 2 (u+20,um>’ (16)
and the output field is i sin (2%%).

2.d) Similarly, still there are two ways to analyze.

[1] If the incident wave is tilted, then one of the two delta functions at the Fourier
plane is blocked by the pupil. The other delta function still gets phase delay and
propagates to the image plane. The field immediately after the grating is

2
exp {z%@x} Ccos (2W202m> . (17)

Then the field incident to the Fourier plane is
27 x 2 6 1 /2" 1 1 (2 1
—0 2 =0 ——— 00— —— 0| — +—
§ [e"p{’ A “’} ( 20 umﬂ (Af A)®{2 (Af A) 3 (Af § A>}

1 " >\f 1 " >\f
§5<x —Qf—x)+§5(x —9f+x>

1 1
= 5(S(x” — 10 mm — 5 mm) + 55(x” — 10 mm + 5 mm), (18)

where the second delta function does not get phase delay now. The field at the output
plane is

5 Bé (2" =5 mm)] L= %exp {—iQ?T%(5 mm)} = %exp {22;(—0.05)5} . (19)

Af



thus, the output field is a tilted plane wave with an angle of —0.05 rad. The factor of
% indicates that the amplitude of the output field is half of the amplitude of the input
field.

[2] The spatial frequency of the tilted plane wave is u = % = 0.1 pm~!. Then, the
field immediately after the grating is

1 1 1 1 1 1
—0(u— - —0|u— . 20
2 (u 10 pm 20 ,um) * 2 (u 10 pm - 20 ,um) (20)

Then, the FT of the output field is

(o). -

and the output field is

%exp {—i27r (%x’) } = %exp {i%ﬂ(—o.%)x’} : (22)

2.e) At the Fourier plane, a signum function with = phase shift is multiplied. It is
equivalent to the Hilbert transform. (http://en.wikipedia.org/wiki/Hilbert transform)
Note that the Hilbert transform converts cos to sin and visa versa.



Problem 3

Plot of the Original Image and its Fourier Transform



High-pass Filter: Edges get enhanced

Low-pass Filter: Soften the Edges
(only the general shape of the mountain can be detected)
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Code for Problem 3, HW7, 2.710 (Optics)
Solutions Fall 2001, Dario Gil

o0 o

clear all;
xX=8;%Pixels blocked = 2* (x+1)

A=imread ('Tejera', 'jpg'); %Read the image to be processed

figure(1)

subplot(1,2,1), imagesc(A)
axis equal; colorbar;
title('Original Image')

subplot(1,2,2), imagesc(loglO(abs (fftshift (££t£2(A)))))
axis equal; colorbar;

title('Magnitude of FT (log scale)')

colormap ('gray"')

% Part (b)

FIA=fftshift (£ft2(R));

B=FTA;

i=length(A) /2-x:1:1length(A) /2+ (x+1) ;
j=1;

B (ll ] ) =0;

figure(2)
subplot(1,2,1), imagesc(abs(ifft2(B)))
axis equal; colorbar;

title('Filtered Image (High-pass)')
subplot(1,2,2), imagesc(loglo (abs(B)))
axis equal; colorbar;

title('Magnitude of FT (log scale)')
colormap ('gray"')

%part (c)

C=zeros(size(A));
c(i,j)=1;
C=C.*FTA;

figure (3)
subplot(1,2,1), imagesc(abs(ifft2(C))})
axis equal; colorbar;

title('Filtered Image (Low-pass)')
subplot (1,2,2), imagesc(logl0 (abs(C)))
axis equal; colorbar;

title('Magnitude of FT (log scale)')
colormap ('gray')
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Problem 4: Fourier transform
4.a) If the Fourier transform is linear, then it should satisfy two conditions

1. §lf(z) + g(x)] = §[f(z)] + §lg(x)], where f(z) and g(z) are input functions to
the Fourier transform

2. Flaf(x)] = aF[f(z)], where a is a constant.

For condition 1,
$17(0) + o)) = [ {F0) + gl 2o =
[ f@eman e [ g@eran = 5l + slote). (23)
For condition 2,
Slaf@] = [faf@} e = a [ e = i@l

Hence, the Fourier transform is a linear transform.
4.b) The transfer function is not defined in this case because the Fourier integral is
not a form of convolution. In other words, the relation is not shift invariant.
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