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MASSACHUSETTS INSTITUTE OF TECHNOLOGY
 

2.710 Optics Spring ’09 
Solutions to Problem Set #7 Due Wednesday, Apr. 22, 2009 

Problem 1: Zernicke phase mask For problem 1, general formulations for the 
4–f system are presented here. As shown in Fig. A in problem 1, x, x′′ , and x′ 

are the lateral coordinates at the input, Fourier, and output plane, respectively. The 
complex transparencies at the input and Fourier plane are denoted by t1(x) and t2(x′′), 
respectively. With on–axis plane illumination, we can formulate as follows: 

1. field immediately after T1: t1(x) 

2. field immediately before T2: F [t1(x)]
x→ x

λf1 

3. field immediately after T2: t2(x′′)F [t1(x)]
x→ x

λf1 

λf1 � 
4. field at the image plane: F t2(x

′′)F [t1(x)]
x→ x

��→ xx
λf2 

f2 ′ 
x� x� x�= F [t2(x ′′)] ⊗F F [t1(x)]

x→ = F [t2(x ′′)] ⊗t1 − x ,
x��→ x��→

λf2 λf1 ��→ 
� λf2 f1xx

λf2 

(1) 

where we use F [F [g(x)]] = g(−x). Note that the field at the image plane is a convo­
lution of the scaled object field and the Fourier transform of the pupil function, where 
the FT of the pupil is the point spread function of the system. 

Next, it is important to model correctly the transparencies of the gratings. For T1, 
the phase delay caused by grooves is 2

λ
π (n − 1)d1, where d1 is the height of the groove 

(1 μm), and the phase profile is shown in Fig. 1. Hence, the complex transparency of 

Figure 1: phase profile of the grating T1(x) 
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1 T is written as { [ ( ) ( )]} 
2π x xiφ1(x)t1(x) =  e = exp i (n − 1)d1 rect ⊗ comb , (2)
λ A A1 2 

where A1 = 5  μm and A2 = 10  μm. Hence, 

eiπ(= −1) if |x| < A1/2,t1(x) =  (3)
1  if  A1/2 < x < A2/2 or  − A2/2 < x < −A1/2, 

for |x| < A2/2. Using the Fourier series (∵ t1(x) is periodic) and A = A2 = 2A1, we  
find the Fourier series coefficients as ∫ A/21 

cq = t1(x)e −i 2

A −A/2 

A
π qxdx 

−A/4 A/4 A/21
 
A

−i 2 −i 2

A 

1 
∫ 

0 1(xA 
For q �= 0,  

A

− −A/2 A/4 A/4 

For = 0,  )d = 0tq c = x . 

⎡ ⎤ 

π π 
e
 

π 
A

−i 2 qxdx (4)qxdx − qxdx += e
 e
 

−A/4 A/4 A/2 
AA

−i 2 −i 2 −i 2⎣ ⎦cq = ∣ − ∣ + ∣ 
A −i2π q ∣ −i2π q ∣ −i2π q ∣ 

A A A−A/2 −A/4 A/4 

A
π π π qx qx qx1
 e
 e
 e


1
 
[ 

ie

π 
2 iπq q − e e
−i π 

2 q − ei π 
2 q e
−iπq − e−i π q

2 

= − + 
A −i2π q −i2π q −i2π q

A A A 
π q − e−i π 

2
iπq − e−iπq [ 

i q ( ) ( ) 
2e
 e
 q q
− = sinc (q) − sinc
 = −sinc
=
 .
 

i2π 
2

i2πq
 2 2
q
 

Thus, cq = −sinc 
2 
q + δ(q); all even orders disappear and only odd orders survive. 

For the grating T2, the phase profile is shown in Fig. 2. 

(a) phase profile (b) real part (c) real part 

Figure 2: complex transparency of the grating T2(x
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Figure 3: the field immediately before T2. 

The complex transparency can be written as { ( ) ( )} ( ) 
x x	 x

t2(x ′′) = 	  rect − rect + irect . (5)
b a	 a 

1.a) the intensity immediately after T1 is 1 because |t1(x)|2 = 1. Since T1 is a pure 
phase object and there is no intensity variation. 

1.b) the field immediately before T2 can be computed from the Fourier series co­
efficients of t1(x). Since the period of T1 is A, the diffraction angle of the order q is 

= q λ , and the diffraction order q is focused at f1θq on the Fourier plane. Hence, the θq A 
field immediately before T2 is 

∞	 ( ) ∞ 
′′ − q

f1λ 
(δ(q) − sinc (q/2)) δ x = (δ(q) − sinc (q/2)) δ (x ′′ − q cm) . (6)

A 
q=−∞	 q=−∞ 

1.c) Since b (the width of the grating T2) is 7 cm, the diffraction orders passing 
through the grating T2 are q = −3, −1, +1, +3, where −1 and +1 orders get phase 
delay of π/2. The field immediately after the grating is 

3	 i π 1 −sinc [δ(x ′′ − 3) + δ(x ′′ + 3)] − e 2 sinc [δ(x ′′ − 1) + δ(x ′′ + 1)] . (7)
2	 2 

The field at the image plane is the Fourier transform of the field immediately after 
the grating T2, which is computed as [ ( )	 ( ) ] 

F −sinc	 
3 

[δ(x ′′ − 3) + δ(x ′′ + 3)] − isinc 
1 

[δ(x ′′ − 1) + δ(x ′′ + 1)] =
 
2 2 ��→ x

�
 
u

λf ( ) [ ] ( ) [	 ]′′ − q) +  δ(x′′ + q)3 δ(x	 1 δ(x′′ − 1) + δ(x′′ + 1)  − 2sinc F − 2isinc F	 = 
2 2	 2 2 

3	 1 −2 3x 2 x −2sinc cos (2π3u)−2isinc cos (2πu) =  −2 cos 2π −2i cos 2π = 
2	 2 3π λf2 π λf2 

4 2π 4 2π 
cos (0.3)x − i cos (0.1)x . (8)

3π λ π λ 
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The intensity at the image plane is 

∣ ( ) ( )∣2 ∣1 2π 2π ∣ 
I(x) ∼ cos (0.3)x − i cos (0.1)x = 

3 λ λ 
1 2π 2π 

cos 2 (0.3)x + cos2 (0.1)x (9)
9 λ λ 
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(a) with the phase mask (b) with the phase mask 

Figure 4: intensity pattern at the image plane 

Figure 4 shows the intensity pattern at the image plane with and without the phase 
mask. 

1.d) In Fig. 4, the phase mask introduces more dramatic intensity contrast, whose 
frequency is proportional to the twice of the spatial frequency of the object grating. In 
Fig. 4(b), there is a intensity variation but the contrast is smaller. This phase mask is 
particularly useful for imaging phase object because phase variation is converted into 
intensity variation. 

1.e) In Fig. 4(a), although all the orders are recovered, the field signal is not 
identical as the input field (the field immediately after T1). Hence, we may still able 
to observe some intensity variation although the contrast could be very limited (but 
still better than the case without the phase mask). 

1.f) If a = 0.5 cm, then the first order does not get the phase delay, and all the 
orders are imaged at the image plane. The output field is identical to the input field 
(the field immediately after T1); no intensity variation is produced. Intuitively, in 
Fig. 4(b), as all the order contribute, the valleys of the intensity pattern is filled and 
eventually uniform intensity pattern is produced. 
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Another solution with an alternative definition of the grating T1 
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Problem 2: Signum phase mask 

2.a) The phase shift induced by the mask is
 

2π 2π
 
s(n − 1) = (1 μm)(0.5) = π. (10)

λ 1 μm 

Hence, the pupil function can be written as 

x′′ − a/4 x′′ + a/4 
P (x ′′) = rect + rect e iπ . (11)

a/2 a/2 

ATF is a scaled pupil function, which is found to be
 

λfu − a/4 λfu + a/4 iπH(u) =  P (λfu) = rect + rect e . (12)
a/2 a/2 

(a) magnitude (b) phase 

Figure 5: ATF of the system 

1 −1Note that a/(2λf) =  
20 μm .
 

2.b) The magnitude and phase of the transparency are shown as below.
 

(a) magnitude (b) phase 

Figure 6: Transparency 

2.c) The optical field at the image plane can be obtained from two ways: 1) direct 
forward computation or 2) frequency analysis. 
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[1] direct forward computation: The incident field to the Fourier plane is � � �� ′′ ′′x 1 x 1 1 x 1 1 1 
F cos 2π �� = δ − + δ + = δ(x ′′ −5 mm)+ δ(x ′′ +5 mm). 

xΛ 2 λf Λ 2 λf Λ 2 2 
λf 

(13) 
Since the width of the pupil is 10 mm, both delta functions pass through the pupil 
with a phase delay. The field immediately after the phase mask is 

1 1 1 1 
δ(x ′′ − 5) + e iπ δ(x ′′ + 5). = δ(x ′′ − 5) − δ(x ′′ + 5). (14)

2 2 2 2 

The field at the image plane is 

1 1 1 1 
F δ(x ′′ − 5) − δ(x ′′ + 5)  = iF δ(x ′′ − 5) − δ(x ′′ + 5)  

2 2 � 2i 2i �x x
λf λf � ′ � � ′ � 

1 x x
= i sin 2π = i sin 2π . (15)

5 λf 20 μm 

[2] frequency analysis: The Fourier transform of the output field is a multiplication 
of the Fourier transform of the input field and the ATF. Since the Fourier transform 

1 1 1of the input signal is 1
2 δ u − 

20 μm + 
2 δ u + , the FT of the output field is 

20 μm 

1 1 1 1 
δ u − − δ u + , (16)

2 20 μm 2 20 μm 

and the output field is i sin 2π x� 
.

20 μm 

2.d) Similarly, still there are two ways to analyze. 
[1] If the incident wave is tilted, then one of the two delta functions at the Fourier 

plane is blocked by the pupil. The other delta function still gets phase delay and 
propagates to the image plane. The field immediately after the grating is 

2π x 
exp i θx cos 2π . (17)

λ 20 μm 

Then the field incident to the Fourier plane is � � � � �� � � � � � � 
2π x x θ 1 x 1 1 x

F exp i θx cos 2π = δ − ⊗ δ − + δ + 
λ 20 μm �� λf λ 2 λf Λ 2 λfx

λf 

1 λf 1 λf′′ − θf − ′′ − θf +δ x + δ x 
2 Λ 2 Λ 

=
1 
δ (x ′′ − 10 mm − 5 mm) + 

1 
δ (x ′′ − 10 mm + 5 mm) , (18)

2 2 

where the second delta function does not get phase delay now. The field at the output 
plane is � � � ′ � � � 

1 1 x 1 2π 
F δ (x ′′ − 5 mm) = exp −i2π (5 mm) = exp i (−0.05)x ′ . (19)

2 � 2 λf 2 λx
λf 

1 
Λ 
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thus, the output field is a tilted plane wave with an angle of −0.05 rad. The factor of 
1 
2 indicates that the amplitude of the output field is half of the amplitude of the input 
field. 

[2] The spatial frequency of the tilted plane wave is u = 
λ
θ = 0.1 μm−1 . Then, the 

field immediately after the grating is 

1 1 1 1 1 1 
δ u − − + δ u − + . (20)

2 10 μm 20 μm 2 10 μm 20 μm 

Then, the FT of the output field is 

1 1 
δ u − , (21)

2 20 μm 

and the output field is � � �� � � 
1 1 1 2π 

exp −i2π x ′ = exp i (−0.05)x ′ . (22)
2 20 2 λ 

2.e) At the Fourier plane, a signum function with π phase shift is multiplied. It is 
equivalent to the Hilbert transform. ( http://en.wikipedia.org/wiki/Hilbert transform) 
Note that the Hilbert transform converts cos to sin and visa versa. 
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Problem 3
 

Plot of the Original Image and its Fourier Transform
 



    

     
         

High-pass Filter: Edges get enhanced
 

Low-pass Filter: Soften the Edges
 
(only the general shape of the mountain can be detected)
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Problem 4: Fourier transform 
4.a) If the Fourier transform is linear, then it should satisfy two conditions 

1.	 F[f(x) +  g(x)] = F[f(x)] + F[g(x)], where f(x) and g(x) are input functions to 
the Fourier transform 

2.	 F[af(x)] = aF[f(x)], where a is a constant. 

For condition 1, 

−i2πxudx =F[f(x) +  g(x)] = {f(x) +  g(x)} e 

−i2πxudx +f(x)e g(x)e −i2πxudx = F[f(x)] + F[g(x)]. (23) 

For condition 2, 

−i2πxudx = a −i2πxudx = aF[f(x)].F[af(x)] = {af(x)} e f(x)e	 (24) 

Hence, the Fourier transform is a linear transform. 
4.b) The transfer function is not defined in this case because the Fourier integral is 

not a form of convolution. In other words, the relation is not shift invariant. 
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