Why are the rays attracted towards the higher index?

Why is the ray trajectory not bending like this ... ... but rather like this?

(after all, the ray is supposed to minimize its optical path: in the 1% option
it does look like the ray is going through a lower index portion of the medium,
and therefore shorter optical path)

To properly contemplate an answer, we must consider not just a single ray,
but a pair of rays following different paths
yet sharing a common beginning and a common end
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A pair of rays with equal paths

In free space, these two rays share a In the GRIN, the paths must be
common beginning (infinity to the left) again equalized.
and common end (infinity to the right)
However, the on-axis ray
Clearly, the straight path is minimal undergoes a longer optical path
for both, so Fermat’s principle is satisfied. due to the higher index. Therefore,
Moreover, clearly the two paths are equal. the off-axis ray must bend its path
to match it. As result, the two rays
now meet at a finite distance
(but still have traveled equal paths ___

B to get there!) I|"




But why does the on-axis ray have to go straight
into the higher index (and longer optical path)?

For example, what's wrong with this scenario: both rays are escaping the “undesirable”
high index area by bending their paths away from it.

Answer: some thought will convince you that if that were the case, should the rays ever
meet again (and they will, eventually, at infinity at the latest) it is impossible for them to

have equal optical paths because the ray that spends most of its trajectory
in the low index area also has the shortest geometrical length.

Therefore, the only possibility to meet the minimum path requirement is the one that
predicts focusing of the ray from the low index area toward the high index area.

it 2 712710
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One final comment: the on-axis ray does not
stay straight because of symmetry

[ ]
D
% 5 . e = -
Symmetric index profile
nlz) =15-33x 103
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Asymmetlric index profile
156-33x 10z if z > 0
n\r) = 3 -
15—22x 10 * z* otherwise.
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Paraxial focusing by a
thin quadratic GRIN lens
d /

A
v
N

Consider a ray from infinity entering the GRIN at elevation r. If focusing
is to be achieved, this ray must meet the on—axis ray at a distance f from the
exit face; therefore, their optical paths must be equal according to Fermat’s
principle.

For the on—axis ray,

OPL (r = 0) = nmaxd + f.

For the ray at elevation r,

2
OPL (7) & npax (1 — %) d+\/r2+ f2,

where we have neglected the small elevation decline due to the bending of the
ray inside the GRIN.
Applying Fermat’s principle in the paraxial approximation,

Oé?“2

nmaxd—l— f ~N MNmax (1 — T) d + T2 + f2 =

maxd 2
5+ YRS \/m%f<l+r—)=>

Q

) 28
Nmaxd o r2
- O — ="
2 2F
1
f o~ .
Nmaxd
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Gradient Index (GRIN) optics:
axial

 ialinde profile:
fai ricanonir f elding & grinding

- Stack
- Meld
« Grind & polish to a sphere

+ Result:
Spherical refractive surface with
axial index profile n(z)
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Correction of spherical aberration
by axial GRIN lenses

al errared

correcred
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Generalized GRIN:
what is the ray path through arbitrary n(r)?

material with variable
optical “density”

..........
......

.
.
.
.’
.
.

g
e,
",
0
------------

“optical path length”

/Fn(r) dl

Fermat’s principle:

The path I' that the ray follows is such that
the value of the path integral of refractive index n (r)
along I' is smaller than all other possible paths I'.

Let's take a break from optics ...
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Mechanical oscillator

spring rest
position

\

ideal spring
constant &

displacement ¢

“particle”
mass m

1
Potential energy: V = ikq2.

1 1 p?
Kinetic energy: T = —mq2 = —p—,
2 2m

where p = mq is the momentum.

Since there is no dissipation,
the total energy

H=T+V

must be conserved.

MIT 2.71/2.710 NS
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Introduction to the Hamiltonian formulation of dynamics

The Hamiltonian formulation is a set of differential equations describing the trajec-
tories of particles that are subject to a potential (force.) The trajectory is described in
terms of the particle position q(¢) and momentum p(¢). The Hamiltonian is the total
energy, ¢.e. the sum of kinetic and potential energies, and it is conserved if there is no
dissipation in the system. For example, for a harmonic oscillator the Hamiltonian is
expressed as ,

p° kg’ (1)

H(q,p) = B & -

The first term is the kinetic energy for a particle of mass m, and the second term is
the potential energy for linear spring constant k.
The Hamiltonian equations in general are

dq oOH

& F (2)
dp  0H

gF = = (3)

The expressions on the right-hand side are the gradients of the Hamiltonian with
respect to the vectors p and q, respectively.

Let us consider the simplest case of a one—dimensional harmonic oscillator. In this
case the position and momentum are scalars ¢, p. The Hamiltonian equations become

dg _ »
dt m d2 1 dp k d’¢ &
dp dt2 m dt mq dt2 T mq ¢ (4)

We have arrived at the familiar 2*4-order harmonic differential equation. For example,
assuming a particle that is initially at position ¢(t = 0) = g and at rest, p(t = 0) = 0,
the solution to the Hamiltonian equations is

alt) = q< %t) )

p(t) = —qoVkmsin (\/%15) (6)

The solution set {q(t), p(t)} is the trajectory of the particle. The motion represented

by the trajectory that we found is clearly a harmonic oscillation.

MIT 2.71/2.710 NUS
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Hamiltonian Optics postulates

o: paraf ereriranon of n e rar majecrorr
» oa pooinon f ecror for n e rar majecrorr ano;
p oa rangennf ecror ro n e rar majecrorr ano

[ ]+ lowinde n;

I - iigi inde n,

» eof ermical poorulare: * rnaf ical poorulare:
e aro are connnuouo and « of ennuf ci angeo along
piecewioe differennai le majecrorr arc lengn

in propornon ro n e local
refracnf e inde gradienn

Aq(s) ~ ‘E Ei:; As Ap(s) = V n(q (s’)> As
dg  p(s) dp
T ds T pG) =4, = Vn(aw)

These are the “equations of motion,”
l.e. they yield the ray trajectories.

MIT 2.71/2.710 NUS
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The ray Hamiltonian

S:(pt+ztv etezz+itst (sthe(z+z(tz+jects zz
Ms+(psshist (vectszwsAthe(z+z(tz+jects z(+(s;(
p(s+(t+t get t(vectsAts(the(z+z(tztjects z(+t(s

[ ] M&w(t de((t, ,
B Mhigh(t de( .,

The choice H = |p| —n(q) vyields

H oOH
VoH = Z—q - Van(a) VpH=2Z_ BU)

Therefore, the equations of motion become

dg O0H dp  OH

ds op &~ _0—q

Since the ray trajectory satisfies a set of Hamiltonian
equations on the quantity H, it follows that H is conserved.

The actual value of H=const. is arbitrary.

MIT 2.71/2.710 NUS
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The ray Hamiltonian and the
Descartes sphere

H = |p| —n(q)=0

The ray momentum p
Is constrained to lie on
a sphere of radius #
at any ray location q
along the trajectory s

Application:
Snell’s law of refraction
Descartes sphere for
optically denser medium,
radius n’.

Descartes sphere for
less optically dense medium,
radius n.

optical
axis

MIT 2.71/2.710
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The ray Hamiltonian and the
Descartes sphere

= |p| —n(q)=0

The ray momentum p
Is constrained to lie on
a sphere of radius #
at any ray location q
along the trajectory s

Application:
propagation in a GRIN medium

n(@)

The Descartes sphere radius is proportional to n(q); as the rays propagate,
the lateral momentum is preserved by gradually changing the ray orientation
to match the Descartes spheres.

Figure by MIT OpenCourseWare. Adapted from Fig. 1.5 in Wolf, Kurt B. Geometric Optics in Phase Space.
New York, NY: Springer, 2004.
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Hamiltonian analogies:
optics vs mechanics

Hamiltonian of = |p|” iy . HEnergy }
manm aninal y tam o~ 9 +V(q) = H,, (conserved)
dg _ ds _ |p .
QUENNLE P R = 3 T Velocity

Mechanical Hamiltonian equations

dg_p dp_ mIV(q)
ds |p|  ds p| g
Optical Hamiltonian equations
dg _p  dp _ 9n(q)
ds |p| ds oq
PR oVia) . _Iplon(a@) _  n(q)dn(q) _
dq m 0q m  0q
1 on*(q)
 2m Oq
2
= V(q) — _& (q) + const.
m
E+1
Choose const. = —2; = 2m [E — V(q)} « n?*(q)—1
m

and Eyinetic x E—V(q) >0 < n(q)>1.

physically allowable  physically allowable

kinetic energy refractive index
MIT 2.71/2.710 = NUS o
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Example: Hamiltonian ray tracing of
quadratic GRIN

44 n(z) = 1.5 — 0.0033 z*

on-axis
incidence

[a.u]

445

4[a.u.]

off-axis incidence,
px(0)=0.2

[a.u.]

225
N

-2

2[a.u.]

Further reading:

* M. Born and E. Wolf, Principles of Optics, Cambrige University Press, 7t edition, sections
4.1-4.2

» K. B. Wolf, Geometrical Optics on Phase Space, Springer, chapters 1, 2

« K. Tian, Three-dimensional (3D) optical information processing, PhD dissertation, MIT 2006.

MIT 2.71/2.710 =3 NUS
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So far

« Geometrical Optics

— Light propagation is described in terms of rays and their
refraction / reflection
— Image formation is described in terms of point sources and
point images
« Region of validity of geometrical optics: features of interest should be
much bigger than the wavelength A

— Problem: geometrical point objects/images are infinitesimally small,
definitely smaller than Al

— So light focusing at a single point is an artifact of the geometric
approximations

— Moreover, especially in microscopy, we are interested in resolving
object features at distances comparable to A

— To understand light behavior at scales ~ A we need to graduate from
geometric to the wave description of light propagation, i.e.
Wave Optics.
MIT 2.71/2.710 @ Ill T
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What is a wave?

Image removed due to copyright restrictions.
Please see:
http://www.reuters.com/news/pictures/searchpopup?picld=8505659

Water waves: Vouliagmeni Bay, Greece
(photo by G. B.)

Photo of a Yagi-Uda antenna
removed due to copyright restrictions.

e >
g ]

Ground surface waves: Chocolate Hills, Philippines
http://www.bohol.ph/picture48.html

Radio waves: Yagi-Uda television antenna Courtesy of Jeroen Hellingman. Used with permission.

MIT 2.71/2.710 -w
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http://www.reuters.com/news/pictures/searchpopup?picId=8505659
http://www.bohol.ph/picture48.html
http://personal.ee.surrey.ac.uk/Personal/D.Jefferies/yagiuda.html

What is a wave?

A wave is a traveling disturbance

Evidence of wave behavior:

Interference

MIT 2.71/2.710
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Traveling waves

) 1 ] T | 1 ]
i : : : : : T A
it=4.U 3 t $ : : (=%
: d & : : : : : : :

..................................................................................

Traveling disturbance Traveling disturbance
(envelope) with sinusoidal modulation
(envelope on a carrier)

MIT 2.71/2.710 @rN:‘l& Illil-
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Traveling wave terminology

6 [ I\ __envelope

._grou_p_veloécity_._, _____________

4 Gturbance

W ‘Car‘ri‘ér ......... ............ e

phase vélocity R

0 0 00 00 00 00 00 00 00

MIT 2.71/2.710
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Harmonic wave

| 1 1 1 1 1 1 J
0 0 00 00 00 00 00 00 00

Z

(z — ct) -+ gb) Ey = amplitude
A = wavelength (spatial period)

| MH‘MMMM{ ﬂ W m ;\O}\St(ﬁ\sl}]ﬁ\fﬁeﬁ
S == phase velocity ¢

T EvavmiMMVVUUU

RERARRERANE H A camer

27r

Disturbance F(z,t) = Ej cos ( 5

One period T = 1/v later, the wave repeats; v = frequency (temporal period)
therefore, ¢ = phase delay
27 & : : :
T =2r= = =1l=c=M\ \n— Dispersion relation
MIT 2.71/2.710

03/11/09 wk6-b- 6



The significance of phase delays

" E(z,t) = Eqcos (277T (2 —ct) + ¢)

m NTETS
MIT 2.71/2.710 ~ "u&l.@*:?z I .
03/11/09 wk6-b- 7 e Simt a



Phase delays and interference

m;'u'(i_n‘)))))\)

in phase out of phase
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