Phase delays and interference
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The 1D wav

Consider a moving disturbance with envelope v of the form

il = il il

The “—” sign denotes a wave moving to the right (forward,)
whereas “4” denotes a wave moving to the left (backwards.)

Denoting by v’ the envelope’s derivative with respect to its argument,

and taking the first partial derivatives with respect to z and t,
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Taking second derivatives,
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This is referred to as the Helmholtz Wave Equation, or simply
the Wave Equation.

We can solve the wave equation for specific envelopes
with proper initial and boundary conditions, e.g.

Y (z) = ag Cos (kz) )

where k is a shorthand for 27 /A and
A is the spatial period (wavelength.)
We can easily see that

f(z,t) = ag cos (k(z £ ct))

satisfy the Wave Equation and the initial condition,
so they are solutions propagating
forward and backward, respectively.
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e equation

The solution is often written in equivalent forms, as

f(z,t) = ag cos (k(z £ ct)) = ag cos (kz + wt) = ag cos (2%(2 £ ct)) .

These are consistent given the definitions

2
A,

-

W=l and the dispersion relation ¢ = Av.




Linear superposition of waves
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This is a linear partial differential equation. We can see easily that : : . : :
if f1 is a solution and f5 is another solution, t=1
then aq f1 + as fo is also a solution for arbitrary constants ai, as. ;

For example, a_w(z—ct)+a+w(z+ct), I n n ﬂ ”ﬂ n n ﬂ n f

a superposition of a forward and backward propagating waves,
is also a solution to the Wave Equation.
It is known as a standing wave.

Let us derive the standing wave for the case of
forward and backward waves of equal amplitudes.

The superposition is U \ u \ UU U v\ U

f(z,t) = acos (kz — wt + ¢) + acos (kz + wt + @) . - - - : -. : i

1 i i A 1

At this point we must recall the trigonometric identity

A+B A-B f(z,t) = 2acos (kz + ¢) cos (wt)
CoS .

cos A + cos B = 2 cos
2 2

is a spatial sinusoid of period A = 27 /k, phase delay ¢

Using the identity, we rewrite the superposition as and is also oscillating with temporal period T' = 27/w.
It is stationary, that is non—propagating.

(kz — wt + @) + (kz + wi + ¢) y Hence the term standing wave.
2
ez — b — &k A
><cos( z—wt+ @) — (kz + wt + ¢)
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Complex (phasor) representation of waves

Consider two simple wave forms with amplitude a, wave number k, angular
frequency w, and phase delay ¢:

fo(z,t) = acos (kz — wt + @), fs(z,t) = asin (kz — wt + @) .

These are both solutions to the Wave Equation (but with different initial
conditions.) Hence, their superposition is also a solution to the Wave
Equation. We form the following special superposition

fzt) = folz,t) +ifs(z,0)
= aexp{i(kz—wt+¢)}.

This is the complex representation of the wave. The complex exponential
provides immense mathematical convenience, as we will see, but it is
important to remember that only its real part has physical significance.
Further acknowledging that in linear media the temporal frequency w of the
wave does not change, it is common to drop the e=*! term, resulting in

aexp{i(kz+¢)}.

This reduced complex representation is sometimes referred to as phasor
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Solution to the standing wave using phasors

Recall the superposition of forward and backward waves resulting in the
standing wave,

f(z,t) = acos (kz — wt + @) + acos (kz + wt + @) .

Some care needs to be taken in deriving the phasor of the backward wave. We
need to get rid of a term of the form e™*“* term, so we write

a COS (kz + wt + gb) = @ CcoS ( —kz — wt — ¢) — Re {e—z’(kzz+wt+¢)}

Therefore, the proper phasor for the backward propagating wave is

aexp{ —tkz — gb}

The superposition is now written as
ae’Fxtd) | ge=ikz40) — 94 cos (kz + (/5) :

This becomes identical to our earlier result on the standing wave after we put
back the cos(wt) term that is implicit in the phasor notation; however, the
derivation was relatively painless, without need for the trigonometric formulae.
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The 3D wave equation

In three-dimensions, the Wave Equation is generalized as
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Our familiar plane and spherical waves are special solutions.

Plane wave
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Planar and Spherical Wavefronts
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t =F/4
z=A/4

t=31/8
z=3)\/8
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Planar wavefront (plane wave):

The wave phase is constant along a
planar surface (the wavefront).

As time evolves, the wavefronts propagate
at the wave speed without changing;

we say that the wavefronts are invariant to
propagation in this case.

Spherical wavefront (spherical wave):

The wave phase is constant along a
spherical surface (the wavefront).

As time evolves, the wavefronts propagate
at the wave speed and expand outwards
while preserving the wave’s energy.




Wavefronts, rays, and wave vectors

EO EO
Rays are:
- k T = 1) normals to the wavefront surfaces
R X 2 , 2) trajectories of “particles of light”

@ ' >

4
N7
M Wave vectors:

t=40 ¢ T/8 : T/4 3 /8 At each point on the wavefront, we may
2= z2=A8 z=A/4 z=3)\/8 assign a normal vector k

This is known as the wave vector;
it magnitude k is the wave number and it
is defined as
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