Today

* Interference

— inadequacy of a single intensity measurement to determine the
optical field

— Michelson interferometer
* measuring
— distance
— index of refraction
— Mach-Zehnder interferometer
* measuring
— wavefront
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A reminder: phase delay in wave propagation

E, cos<-wf> £ CO;(_W 7“)-

z=2.875A
phasor due
In general, E, cos(kz —u)t)=> E, exp to propagation
(path delay)
real representation phasor representation
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Phase delay from a plane wave propagating at angle 6
towards a vertical screen

= . . .
o S path delay increases linearly with x
X .8 F
23 2
s path delay
2% ¢
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z=fixed (not to scale)

E(z,z,t) = Ejcos [k (xsinf 4 zcosf) — wt]
Phasor representation:
. ) 2m ,
E(zx,z) = Egexp {zk (xsinf + z cos (9)} = Fpexp {ZT (xsinf + zcos «9)}

: : 2
may also be written as: Ey e, where ¢(x) = TW:I: sin 6 + const.
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Phase delay from a spherical wave propagating from distance z
towards a vertical screen

E(x7 y? Z? t)

— &

path delay increases quadratically with x

path delay

¢

at fixed 7 797

COS [k\/x2+y2+22 —wt—Z

)\\/:1:2 + y2 + 22

Phasor representation:

exp {zk\/xz +y? + 22 — %}

E(z,y,2) = Ay

may also be written as:
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The significance of phase delays

* The intensity of plane and spherical waves, observed on a screen, is
very similar so they cannot be reliably discriminated

— note that the 1/(x?+y?+z2) intensity variation in the case of the
spherical wave is too weak in the paraxial case z>>|x|, |y|
so in practice it cannot be measured reliably

* In many other cases, the phase of the field carries important
information, for example

— the "history” of where the field has been through
« distance traveled
* materials in the path
» generally, the “optical path length” is inscribed in the phase
— the evolution of the field beyond its present position (“diffraction”)

« However, phase cannot be measured directly (e.g., with an oscillo-
scope, because the optical field varies too rapidly, ~1014-101° Hz

* Interferometry measures the phase by comparing two fields: the
unknown, or “signal” field with a known “reference” field
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Michelson interferometer

The photo-detector receives the field sum of the waves

re;?iiergfe WY arriving from the reference and signal arms:
3 wave from
[ .
o £ : signal arm {
5 © signal
© mirror .
signal wave irom t
agrm reference arm + =
light t
source
sbeli?trgr reference and signal waves in phase:
P U”‘g_‘OV‘t’” constructive interference
objec
or path
lens wave from
signal arm t
photo-detector wave from t
reference arm + = >
2
§ & |A]C exp {zqﬁr} + A exp {qus}‘
where A, As are the amplitudes and @r, @s the phase delays
introduced after one round trip reference and signal waves out of phase:

in the reference and signal arms, respectively destructive interference
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Example: measuring distance

reference The interference is re-written as

mirror W\} moving
& o (Ar exp 110, p + Ag exp i ) NV
3 <> ] )
[ . . *
known l o % signal N (Ar exp {i¢, } + Asexp {z¢s}>
ath r QL ;
P 3 | mirror = A2+ A2 424, A, cos (¢ — )
S;%r:l = & (1 + m cos Aqb) L where
light
source
v Ip= A?+ A2 mean intensity
o m= 24,4:/I contrast (or fringe visibility)
beam < >% Ap= ¢ — ¢ optical path difference.
splitter 7
unl;gtc;]wn When both paths are clear, as shown on the left,
[ _ 27 _ 2m
lens & ¢I‘ » 7 2lr ¢S » 7 2ls

2
e 7”2(1r e

photo-detector
The relative length of the unknown signal path compared to
the reference path can be established (mod 21).

2
Iy x |A]C exp {icﬁr} + A exp {i(bs}‘

where A, As are the amplitudes and @r, @s the phase delays
introduced after one round trip
in the reference and signal arms, respectively
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Example: measuring optical density

reference R The interference is again written as
o Iy x I (1 + m cos Agb) L where
(&)
[
knov;/]n [, 2 % signal
pat IS mirror Ip= A? + A2 mean intensity
signal m= 2A.A4:/I contrast (or fringe visibility)
light Aod= & —a& optical path difference;
source A
except now
P 2w 2z 2mn
beam < QSY:TQZY ¢S:72(ZS—L)+T2L
splitter known
2 2
path —ao- o por Moy o)
l A A
s
lens object of unknown Since [g, [, are known e.md constant, .
thickness L or we may use the last equation to determine
index of refraction n either n or L (but not both!)

photo-detector

2
Iy x |A]C exp {iqﬁr} + A exp {i(bs}‘

where A, As are the amplitudes and @r, @s the phase delays
introduced after one round trip
in the reference and signal arms, respectively
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Contrast (fringe visibility) in interferometry

AI':A S
Intensity perfect contrast
m=1

Highest contrast /
fringe visibility 1s obtained
by interfering beams of
equal amplitudes

Intensity ”
4 O<m<] A(I)
2m %1y . A<<A4
-------- Intensity s -
N no interference
] or’\""7 """\ "\ mzo
| >
Ad I
A=A, ‘
imperfect contrast A(l)
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Mach-Zehnder interferometer

reference beam

mirror reference combiner
arm

X

=

w i

signal
arm
light
source
rotation
beam 0
splitter unknown =

object signal

mirror

For example, consider a plane wave incident on the interferometer, with
no unknown object (i.e. clear object path) and the signal mirror tilted by 6.
Assuming that the beam splitter ratio is 50% in intensity and that the
incident plane wave has amplitude A and is parallel to the optical axis, the
interference pattern at the camera plane is written as

2
, where

&l oc '%exp {i%zo} + %exp {22% (zsind + 2 cos@)}

2o (constant) is the camera location and z the camera coordinate.

A 2
This works out to I4(z) o ll + cos (%x sin 6 + 925)}

A 2
i.e. a spatial sinusoid of period A = 7 shifted by ¢ = Tﬁzo (cosf —1).
sin

CCD
camera

A x

in this case the
“interference pattern” Iy
is function of position x
so it is digitized by a
pixelated sensor array
(digital camera)

Interference pattern

o ld(X)
27

e

= i



Interference pattern: mapping the
incident field & incident wavefront

é\g:\Na\]e
ova® observation plane
6 (digital camera)
reference X /
plane wave
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Today

* Huygens principle
* Young’s interferometer

« Generalizing Young’s interferometer:
Huygens principle and thin transparencies =

= Fresnel diffraction integral

 Diffraction
— Fresnel regime

Next week

— Fraunhofer regime
« Spatial frequencies and Fourier transforms
Fraunhofer patterns of typical apertures
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Huygens principle
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Each point on the wavefront
acts as a secondary light source
emitting a spherical wave

The wavefront after a short
propagation distance is the

result of superimposing all

these spherical waves, i.e.

adding the corresponding phasors
including the phase delay
incurred due to propagation




Example: hole in an opaque screen

exp {ikz} 35‘ T z'
0 (z — o) exp {ik(z+l)}ex o (' — x9)? + y'?
- il P Al
spherical
— wave
X=X,
= §
=
=
=
incoming —]
plane wave opaque * .
(on-axis) screen
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Example: two holes in an opaque screen

o
exp {ik(z—l—l)}ex - (' — x9)? + y'?
— 5 (2 + 20) o P N

: 2 2
Sp]+exp {zk(z +10)} oxp Lir (' +x9)* +
! il Y

exp {ikz}

\ 4

spherical
wave

incoming _J
plane wave opaque <
(on-axis) screen
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Young interferometer

observation

point x’
\o

X=X,

z

A
»~

The light intensity depends on the optical path
length difference (OPLD) between the two
sources x=txo and the observation point x":

if the OPLD is an even multiple of A/2
(constructive interference, phase difference
equal to even multiple of 1) then the intensity
IS maximum,;

incoming ] « iftthetQPIT[?[ iifan odd mﬁltipled-(])c; N2

2= estructive interference, phase difference

plane W?,Ve opaque equal to an odd multiple of 1), then the
(on-axis) screen intensity is zero.
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Young interferometer

A
€T L )
mtensity
- observation ||| @ N ..
point x’

- da o

X=X,
) &
) X=X,
)

d = \/l2+($’—l’0)

)

incomin ; sl —
lane wa\g/e opaque 3=l QLR = ¢ — ¢ Lo 9 o
p ) p q < 25130$,
(on-axis) screen s
Al
QARLD — ) o g = 2
2$0
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Derivation of Young’s interference pattern

The superposition of the fields generated by the two holes is g(a',y’) =

_exp {ik(z+1)} (@ —zo)2+y?)  exp{ik(z+1)} (@ +ze)+y?)
- i P& A & N P E A -

ik +l 12 2 /12 / /
_ &P {Zz)(\lz >}exp {z’wx ) i(; Ty } exp {—i27rx§\:lp } + exp {z’27rx§\lx }

15 —I—l /12 2 /12 /
_ AP {Zz)(\lz )}exp {iwm +:§\(l) Ty } X 2 cos (27T$§j ) '

The intensity is the modulus—squared of the field phasor, i.e.

/ 2 / /
I(@,y) = |g(a’,y))? = dcos® [ 2022 ) =2 |1 + cos (27 =2 =2 |1+cos (27|,
d N N A

Al Do
where A = —— is the spatial period of the sinusoidal interference pattern.
Zo

\

Al

.4_.. A= 20
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incident
wavefront
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g+($7y) - gt(:c?y) X g_(x,y)
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Thin transparency

transmitted
wavefront

—

<~50A

g+($,y)

Assumptions:
= features on the transparency are larger than ~A
= thickness of the transparency may be neglected

The transparency has two effects on the incoming wavefront:
» attenuation, which is determined by the opacity of the
transparency at a given location, and typically is

» binary (more common; transmission is either completely
clear or completely opaque) or
» grayscale (at greater expense)
» phase delay, which is dependent on the optical path length
(OPL) at the transmissive (or grayscale) locations, and is
» binary (more common; phase delay is one of two values);

» multi-level (at greater expense; phase delay is one of M
values); or

» continuous (also known as surface relief)

The attenuation and phase delay imposed by the thin
transparency are described together as a

complex transmission function, whose

» modulus is the attenuation; and

» phase is the phase delay

gt(z,y) = a(z,y) exp {iqﬁ(aﬁ, y)}

Transmission function




Thin transparency: generalized Young interferometer

incident transmitted The thin transparency may also be thought of as a
wavefront, f wavefront, generalized Young’s interferometer in the following sense:
decomposed / decomposed o _ _
into | g into We decompose the incident wavefront into Huygens point
Huygens Huygens sources; Huygens principle says that the transmitted

wavefront may also be decomposed into point sources.

point sources point sources

If the transparency is sufficiently thin, the each Huygens
point source in the incident wavefront is directly transmitted
to a Huygens point source in the outgoing wavefront,
possibly with an attenuation and phase delay given by the

/

g—(z,y)x > .
9-(z,9)x transparency’s complex transmission function.
5(z — w1,y — 1) 8(® — 21,y — Y1) X . . "
P The overall transmitted wavefront is the superposition of the

Huygens point sources obtained by point-by-point
multiplication of the incident wavefront times the complex
transmission function. Therefore, the overall transmitted

wavefront is obtained as a generalized Young’s
interferometer with not just two, but a continuum of (infinite)
point sources.

_ - _ 9-(z1,41) = //g—(iv,y) X 0(x — x1,y — y1)dady
Using the sifting property of delta functions we can

express the incident and transmitted wavefronts as "
g+(@1,91) = // g-(2,y) X 6(x — w1,y — y1) x gi(1,y1)dwdy
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The Fresnel diffraction integral

point sources point sources

incident . L transmitted .
wavefront, . wavefront, .
decomposed [ decomposed .
into . into .
Huygens . Huygens

1

1

1

/

g e i g9-(@,y)x
oz —x1,¥y — Y1) 6(z —z1,y —y1)x
: gt(xlayl)
;
;
1
1
;
A
1
1

e

This result is known as
Fresnel diffraction integral
(or simply Fresnel integral)
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Each Huygens point source is a divergent
spherical wave; therefore, after propagating
by distance zin free space, it can be
expressed as

g e augle

1 /I 2 ! 2
—exp {i27r§}exp{z’7r(£ z)"+ (¢ —91) }x

Az
gt(l'b yl)

The entire propagated wavefront is the
superposition of the propagated Huygens
point sources at the wavefront transmitted by
the transparency, so it may be expressed as

9($/7?J/;Z) = //9—(3317%) X ge(x1,Yy1)X
1

a 2 & 2
%exp {i27ri}exp {mr(x 2) + & — 1) }dwldyl

A Az

G U



Fresnel integral is a convolution

T A Ao
Fresnel convolution integral
o i27 £ a2 4 g2
gin(mvy) gout(x 7y) - gin<37,y) * ( R exXp {”T e })
o I N2
Jout(2', 4’5 2) = —eXp z27f //gm T yeXp{' it ;(y y) }dxdy
Z

Free space propagation is expressed as a Fresnel diffraction integral, which is mathematically
identical to convolution of the incoming wavefront with (the paraxial approximation expression for)

a spherical wave.

In systems language, we can express free space propagation in a block diagram as

Gin(Z,y)

>

Jout (', ')

, x2+y2} >

The spherical wave is the system’s impulse response; in Optics, we refer to it as the

MIT 2.71/2.710
04/01/09 wk8-b-11

Point Spread Function (PSF).
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Example: circular aperture

The wavefront produced by a circular aperture of radius R is

e 1, #2442 < @2
&2¥ = 0, otherwise.

The Fresnel diffraction integral for the circular aperture is

1271' . 2 I 2
e (R // exp{. (@l — o)d+ (e — }dxdy.
INZ 2442<R? Az

For an on—axis observation point (2’ = 0,y = 0), this becomes

7/271'A 2+y
out(0, 0; dzdy.
! t( Z Iz //$2+y2<R2 exp{ Az } a4

We rewrite this integral in polar coordinates as

227r— 27 ei27r§ R p2
/ d0/ pdpexp in? 4 — , ><27r></ pexp s im— »dp.
Az Az 0 Az

Now we make the substitution & = 7p?/\z and obtain

2
cllaE Az Ll il R2
ut(0, 0; — = Qar > W e'tde = 2 jr S _ ]
Gout 2 CVIRS Rk 0 3 p) (exp {m Az } >

= 2exp {2271'2 +i7TR—2} — <e p{sz—z} — exp{—mR—z}>
A 2\ 2\ 2\

= 2exp {z27rz +17TR—2}sin <7rR—2) L
A 2\z 2\z

We observe that the diffracted field has harmonically spaced on—axis peaks at

Jout (0 0 Z

R2
2o = —— and nulls at

g
2A(m —1/2) &= +e




Example: circular aperture

5N

R = 40\ R =10A

= The ripples that arise near the edges of the aperture after a very short propagation distance and are
noticeable in the large aperture case are characteristic of diffraction with coherent illumination and are
referred to as “Fresnel ripples” or “diffraction ripples.”

= The alternating peaks (bright) and nulls (dark) that are noticeable in the small aperture case are
referred to as “Poisson spot” or “blinking spot.”

MIT 2.71/2.710
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Example: rectangular aperture

5N B 5N

Aperture size = 40\ Aperture size = 10\

= Fresnel ripples are again noticeable in the large aperture case but produce a different ripple structure
because of the rectangular geometry.

= The diffraction pattern from the small aperture changes qualitatively after some propagation distance;
it begins to look like a sinc function, the Fourier transform of the boxcar function. We will explain this
phenomenon quantitatively very soon; we refer to it as the Fraunhofer diffraction regime.

= Fraunhofer diffraction occurs in the case of the large aperture as well, but after a longer propagation
distance (we will quantify that as well.)
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