Today

« Temporal and spatial coherence
« Spatially incoherent imaging
— The incoherent PSF

— The Optical Transfer Function (OTF) and
Modulation Transfer Function (MTF)

— MTF and contrast
— comparison of spatially coherent and incoherent imaging

next two weeks

» Applications of the MTF
 Diffractive optics and holography
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Temporal coherence
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If paths 1 & 2 are matched, then the
recombined waveforms at the
detector are correlated so they
produce interference fringes.
However, as the difference d>—d1
increases, the degree of correlation
decreases and so does the contrast
in the interference pattern.
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Spatial coherence

Young interferometer

o

If holes 1 & 2 are coincident, or very
closely spaced, then the
recombined waveforms at the
detector are correlated so they

waveform from hole 1,

location a1 produce interference fringes.
However, as the difference x2—x1
waveform from hole 2, increases, the degree of correlation
location x2 decreases and so does the contrast

in the interference pattern.
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to the detector)

interference
recorded near the bisectrix
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Field intensity in the coherent and incoherent cases

The fringe pattern in the Michelson interferometer (notes wk8-a-7) is

2a1az 2
In = (a} + a3) {1 T <72(d2 - dl))] ;

where a1, as are the amplitudes recombining from paths 1 and 2,
respectively; and A is the mean wavelength.

The fringe pattern in the Young interferometer (notes wk8-b-7) is

2 2’
Iy = (af +a3) [14— g1z cos( e o, —:cl))] X

a? + a2 i

where a1, as are the amplitudes recombining from holes 1 and 2,
respectively, 2’ is the observation screen coordinate, and I the distance
between the screen with the holes and the observation plane.

In both cases, the interference pattern can be written as
: o dio
= ]ale“’51 -+ age“’h‘ = Iy [1 4+ mcos(¢2 — ¢1)],

where Iy = a} + a3 = I, + I is the average intensity,
m = 2\/ 11[2/ (Il + Ig) is the contrast,
and ¢1, ¢o the phase delays incurred in paths 1, 2, respectively.
When the fields are mutually coherent (temporally coherent in the
Michelson and spatially coherent in the Young interferometer),
I may be as high as Iy(1 +m) (when ¢o — ¢1 = 0,27, 4m,...)
or as low as Ip(1 —m) (when ¢o — ¢y = 7,3, 57, .. .).
In the perfect contrast case (a3 = ag, m = 1) the high and low values

of the interference intensity are 21y and 0, respectively.

Perfectly coherent

Intensity

L=+

MIT 2.71/2.710
04/29/09 wk12-b- 4

Intensity 4

lo=1+D

When the fields are incoherent, the interference fringes are moving
rapidly because the phase delay A¢ = ¢ — ¢9 is itself changing rapidly.
Therefore, a slow detector observes instead the time averaged

2a1 a9

(1) = (@ +ad) [1+ 312 (cos(89)]

17T a3
In the perfectly incoherent case, the cos (A¢) fluctuations average out
to zero. Therefore, the average intensity in the perfectly incoherent case is

<I>inc0h > a% o a% = }alei‘i’l |2 + |a26i¢2 |2 )

We conclude that:

e In the perfectly coherent case, the intensity is computed as the modulus—
squared of the sum of the phasors of the interfering fields; whereas

e in the perfectly incoherent case, the intensity is computed as the sum of
the moduli—squared of the phasors of the interfering fields.

Of course the two extreme cases are idealized and do not occur in practice.
More realistic is the partially coherent description of an optical field; however,
that requires a more sophisticated mathematical treatment and is beyond the

scope of this class (it is covered in 2.717).
The perfectly coherent—incoherent assumptions are sufficient
for many cases of practical interest.

Summary

Coherent

ifa— ‘aleid’l + ageid’2|2

= (I + ) [1 4+ mcos (A¢)] ;
= Il +I2

Incoherent I = |aje'® |2 b |a2ei¢2|2

Perfectly incoherent




Coherent and incoherent sources and measurements

Temporally incoherent;
spatially coherent

= White light lamp (broadband; e.g., thermal)
spatially limited by a pinhole

= \White light source located very far away
(i.e. with extremely small NA)
e.g. sun, stars, lighthouse at long distance

= Pulsed laser sources with extremely short
(<nsec) pulse duration; supercontinuum sources

Temporally & spatially
coherent

= Monochromatic laser sources

e.g. doubled Nd:YAG (best), HeNe, Ar* (poorer)
= Atomic transition (quasi-monochromatic)

lamps (e.g. Xe) spatially limited by a pinhole

Temporally & spatially
incoherent

= White light source
at a nearby distance
or without spatial limitation

also referred to as
quasi-monochromatic
spatially incoherent

= Monochromatic laser sources
(e.g. HeNe, doubled Nd:YAG) with a rotating
diffuser (plate of ground glass) in the
beam path

= Atomic transition (quasi-monochromatic)
lamps (e.g. Xe) without spatial limitation

Temporally coherent;
spatially incoherent

Optical instruments utilizing the degree of coherence for imaging
= Michelson interferometer [spatial; high resolution astronomical imaging at optical frequencies]
= Radio telescopes, e.g. the Very Large Array (VLA) [spatial; astronomical imaging at RF frequencies]
= Optical Coherence Tomography (OCT) [temporal; bioimaging with optical sectioning]
= Multipole illumination in optical lithography [spatial; sub-um feature patterning]

MIT 2.71/2.710
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Implications of coherence on imaging

« An optical system behaves differently if iluminated by temporally or
spatially coherent or incoherent light

« Temporally incoherent illumination is typically associated with white light
(or, generally, broadband) operation [Goodman 6.1.3]

— for example, chromatic aberration is typical evidence of temporal
incoherence

 The degree of spatial coherence alters the description of an optical
system as a linear system

— if the illumination is spatially coherent, the output field (phasor) is
described as a convolution of the input field (phasor) with the
“‘coherent” PSF /(x,y)

(as we already saw)

— if the illumination is spatially incoherent, the output intensity is
described as a convolution of the input intensity with the
“incoherent” PSF 7i(x,y)

(as we are about to see)

MIT 2.71/2.710
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Spatially coherent imaging with the 4F system

Z pupil "’ < 7' A| /. reduced
T “\\q\aSk \QC}'O Ti 0 coordinates
. 7”7 7”7 O\
gem(x”y”) & output

arbitrary complex
field

input transparenc

spatially coherenl
illumination

Al |
input field ) fl 1 .f2 ) f2 \>

diffraction from the diffracted field diffracted field wave converging
input field after objective  after pupil mask to form the image
at the output plane

\

lllumination: g;jjym (2, y) Input transparency: 9+(Z,y)
Field to the right of the input transparency (input field):  gin (T, ¥) = Gillum (%, y) X g¢(x, y)

Pupil mask:  gpm(z”,y") Amplitude transfer function (ATF): H (u,v) = a gpm (Afru, Af1v)
x/ %

h(z',y") = a Gpm (V’ %) in actual coordinates
Point Spread Function (PSF): ; . g ;

h(xg,y5) = a Gpym | — 20 % ) in reduced coordinates

’ Ak’ Ak
Output field: g i ol — // gin(z,y)h (g; - _x b 4 ;2 )dx dy in actual coordinates
1

g bl oS = // gin(z,y)h (x5 — z,yy —y)dax dy  in reduced coordinates



Spatially coherent imaging with the 4F system

T x
“Young”
input transparency
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interference term, or “cross-term”

N
7

diffracted field
after pupil mask

v

- diffraction-limited
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coherent
superposition

Since the incoming illumination is spatially coherent, the diffracted images add up as phasors, i.e.
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Spatially incoherent imaging with the 4F system

T T reduced
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Since the incoming illumination is spatially incoherent, the diffracted images add up in intensity, i.e.
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Spatially coherent vs incoherent imaging:
two point sources

e gielll = Cnimls eo giolll = Clil
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Spatially incoherent PSF of the 4F system

T pupil 2"’ < x’ 336 reduced
mask &® coordinates
arbitrary complex grm(x”y”) O
input transparenc

spatially incohere
illumination

Tium(x,y)=|gium(x,)

N &
7 N

/> />

diffraction from the diffracted field diffracted field incoherent
input field after objective  after pupil mask superposition

Generalizing the principle of coherent superposition in the case of an arbitrary complex input transparency,
we find that the intensity at the output plane is

Iout(x/,y/) — //Iillum(xay) |gt($ay)|2 ‘h’ (x i %xhy iy ; 1)

& [
// Iillum(xa y) |gt(xay)|2 hI (IE/ als f_jxlay/ o f_jyl dxdy Where hI(.T, y) = |h(x7 y)IQ .
or, assuming uniform input illumination Ljum(z,y) = 1,
2
Luw(z',y') = / lge(z, )|? |k (m 4 2, bk I y)
fi fi
fa

fo
- / |g¢(, )| h1 <£L‘ + =21,y + = )d:):dy.
MIT h 7 — NUS l
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dzdy

is the incoherent Point Spread Function
- (iPSF)




Derivation of the Optical Transfer Function (OTF)

Since the spatially coherent PSF h(z,y) and ATF H (u,v)
are a Fourier transform pair, we can write the PSF

as the Fourier integral of the ATF

bl ) — / H(u,v)exp {i27 (ux + vy)} dudv.

h’I(‘r’y) »

H(u,v) =

MIT 2.71/2.710
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The spatially incoherent PSF is
\h(z, y)|” <& The iPSF is the modulus squared of the cPSF

/ H(uy,v1)exp {i2n (urx + v1y) } dusdo; X <= Ih(m,y)!2 = h(z,y) x h*(z,y) and then

. we write each term as a Fourier integral
/ H* (ug,v2) exp {—i27 (ugx + vay) } dusduvg

//duldvl // dugdva H (ug,v1)H* (ug, v9) X <= combine the integrals and

rearrange the order of integration
exp{z27r up — u2)x + (v1 —vg)y” g 9

// duidu; // dudvH (u1,v1)H* (ug —u,v; —v) x <g=a define new integration variables

exp {i27r (ux—i—vy)} bsdd i Lsd — &

// dudv U/ duydvy H (uy,v1)H* (uy — u,v1 — v)} x <= rearrange the order of integration
exp {i27r (um b vy)}

// dudvM(u, v) exp {i27 (uz +vy)},  where <G=a observe that this expression is again
a Fourier integral

// du'dv' H (v, v")H* (v’ — u,v — v).
R correlation integral




t H(u)

Example: 1D OTF from ATF

V:

1 E"((”)

yﬁ

max

max

max max max

Consider a clear—aperture pupil mask, which therefore has a boxcar ATF

H(u) = rect (

u
Y
Umax

where the cut—of spatial frequency Umax 1S related to the
pupil aperture size xl .. aS Umax = Timax/ (Af1)-

The same optical system, when incoherently illuminated has OTF

u) * H(u)
= /H VH* (v — u)du

u’
= / rect(
umax

o

> du/

Q i< B ..

ff+umax du’ = v+ 2Umax, If — 2Umax < u <0

Umax

» fumax du’ = u — 2UmaX7 fo<u< T —— /

B il > 2e .

U—Umax

u

gc i ( ) , where the triangle function is denotedhas A(.)
2Umax
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in Goodman pp. 12-13.

2u

max

It is customary to normalize
such that the OTF peak is 1:

H(0,0) = 1.

/H(u’ —u) 1‘~/H(u’)

u _umax umax u,
Hu'" —u) 4 Hu")
;/l _umax umax u,:
Hu'") \ i 4 /H(u’ —u)
_umax uumax u’
H(u’ A H(u’" —u
NS /7
_umax max




Examples: ATF vs OTF in 2D

rectangular aperture circular aperture
ATF ATF
1 H : 1l 1 H |
0.75 i fili 0.75 i :
0.25 | ’|||||||I|H' 0.5 0.250 1L ||| |\ | 05
-q | l | 0 -1 0
R -0.5
0.5 : - tyl2f g : AT
0.5
X2l 05 4 fx/2fo 4

Goodman pp. 138, 144, 146

MIT 2.71/2.710 Fig. 6.3, 6.7, 6.9 in Goodman, Joseph W. Introduction to Fourier Optics. Englewood, CO:Roberts & Co., | NUS I B =
: : 2004. ISBN: 9780974707723. (c) Roberts & Co. All rights reserved. This content is excluded from National University
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our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse. ]
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Terminology and basic relationships

coherent h(:): ) physical meaning: optical field produced
Point Spread Function PSF e - when the illumination is a point source

incoherent i ( ) . ‘h(:lj y) ’2 physical meaning: intensity produced

Point Spread Function iPSF wh.en the illumination is a pomt. source
in the 4F system: mathematically

identical to the pupil mask gpm(x”,y"),

within a coordinate scaling operation
H(u,v) = agpm (Afru, Af1v)

Amplitude Transfer Function ATF H(u,v) = F{h(z,y)}
(coherent illumination) _ // (z, y)e~ 2T (ua+vY) 4o dy
autocorrelation
/ of the ATF
Optical Transfer Function OTF H(u,v) = H(u,v)*H(u,v)
(incoherent illumination) _ / H, o ) H (' — u,v' — v)du'do’
modulus
Modulation Transfer Function MTF — ofthe MTF
(incoherent illumination) H(u,v) = [H(u,v)|

MIT 2.71/2.710
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Block diagrams for coherent and incoherent

linear shift invariant imaging systems
spatially

thin input output
transparency field
illumination
92, Y) cPSF
gin(x, y) = gout(LU/, y/) _
Jillum (33, y) = Yillum (.Cl?', y) X Gt ('/'U7 y) convolution = Jin (ZE, y)%h("t, y)
Fourier ﬁ Fourier
transform transform
ATF Coun(,0) =
= out ) >
or spectr_uranng];J Lall;rslgev\?;r\tjerg Gl ) >
multiplication = Gin(u,v) x H(u,v)

nput outout
. — transparency : . . |
ilumination ") bsr
, in I out/ ./ ./
gz, ) = gadi(z', o) =
2 in
Iillum(l'a y) > illum(x) ?J) X |9t(-’13, y)' convolution = i (LU, y)%hl(% y)
Fourier ﬁ Fourier
transform transform
| OTF T
G1' (u,v) — "
multiplication = Gt (u,v) X H(u,v)
MIT 2.71/2.710 me N JS = -
04/29/09 wk12-b-16 @ - I I I m I



Interpretation of the MTF /1

Consider a grating whose amplitude transmission function is:

Gt (gc) = equ(x) \/2 {1 + m cos <27T%> } where ¢(x) is an arbitrary phase function.

If iluminated uniformly, the intensity past the grating is:
2 1 X
gi(x) = |gs(x)]” = 5{1—i—mcos (27’(’K)}

The Fourier transform of this intensity transmission function is:

Fla(x)} = Gi(u) =

- s ga(e-5)+a (v 1)

The output of an optical system with 1:1 magnification resulting from this sinusoidal input signal is:

Flg™(=)} = Gi*(u) = Gi(u) x H(u)
- % {H(O)é(u) . [H (+%) 5 (u - %) +H (—%) 5 (u+ %)] }

MIT 2.71/2.710
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Interpretation of the MTF /2

Since the incoherent point-spread function hy(x) is positive, its Fourier transform H(u)
must be Hermitian, i.e. it must satisfy the relationship H(—u) = H"(u)  (show this!)

A complex function with this property is called Hermitian; therefore, the OTF of a
physically realizable optical system must be Hermitian.

Therefore, after some algebraic manipulation, and using the normalization H(0) =1
we find that the intensity image at the output of the optical system is:

gp "t (a) = % {1 +m ‘H (%) cos (%%)}

Y jmax - -[min

Recall the definition of contrast

Imax ¥ Imin
t out
g — gl ~ (1
which for our case is applied as ¥ = O’uTaX Oi?m = o | & A
gl,max - gI,min

We conclude that the value of the MTF at a given spatial frequency expresses the contrast at
that spatial frequency relative to the contrast of the same spatial frequency in the input
intensity pattern. The contrast change is the result of propagation through the optical system,
including free space diffraction and the effect of the pupil mask.

MIT 2.71/2.710
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Interpretation of the MTF /3

Graphical interpretation: (assuming m=1)

H(u,v) = [H(u,v)| I(x")

% {1 + m cos (27r%)} I::> gi(zh) = % {1 + ‘H (%)

MIT 2.71/2.710 s -
04/29/39 wk71 2-b-19 I I I 1|



Diffraction limited vs. aberrated OTF

ideal thin lens, e ideal thin lens,
finite rectangular aperture H (u, U) (MTF) finite circular aperture
diffraction limited diffraction limited
H o1

1

realistic lens,
finite aperture
& aberrations

realistic lens,
finite aperture
& aberrations

0.5

A\ 4

> y N 2y 0.5 1
0 max max Goodman p. 146 normalized polar

. . spatial frequency
u.., is the cutoff frequency of the corresponding

coherent imaging system.

= |n a diffraction limited optical system with clear rectangular aperture and no aberrations, using spatially
incoherent illumination, the contrast (fringe visibility) at the image of a sinusoidal thin transparency

of spatial frequency uo decreass linearly with ug, according to the triangle function

= |n a diffraction limited optical system with circular aperture, the contrast decreases approximately linearly
with uo, according to the autocorrelation function of the circ function

= |[n an aberrated optical system, the contrast is generally less than in the diffraction limited system of the
same cut-off frequency.

Fig. 6.9b in Goodman, Joseph W. Introduction to Fourier Optics. Englewood, CO:Roberts & Co.,

MIT 2.71/2.710 2004. ISBN: 9780974707723. (c) Roberts & Co. All rights reserved. This content is excluded from & N I
04/29/09 wk12-b-20 our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.[] @ ational Universi
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Example: band pass filtering a binary amplitude grating
with spatially incoherent illumination

T x : pupil "/ T x’

input transparency

binary amplitude output
grating w

quasi-
monochromatic \\
spatially <&
incoherent f f f
illumination, 1 1 2 2

uniform intensity

v
N
v

Consider the optical system from lecture 19, slide 16, with a pupil mask consisting of two holes, each of
diameter (aperture) 1cm and centered at +1cm from the optical axis, respectively. Recall that the wavelength
is A=0.5um and the focal lengths fi=f2==20cm. However, now the illumination is spatially incoherent.

What is the intensity observed at the output (image) plane?

The sequence to solve this kind of problem is: ‘
= calculate the input intensity as T, (z) = L () X |g:(x)|° and calculate its Fourier transform Gy (u)
= obtain the ATF as H(u) = gpm(x” /A f1)

= obtain the OTF H(u) as the autocorrelation of H(u) and multiply the OTF by Gi(u)
= Fourier transform the product and scale to the output plane coordinates x’ =ulf;

MIT 2.71/2.710
04/29/09 wk12-b-21
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Example: band pass filtering a binary amplitude grating

with enatiallv incoherent illumination
binary amplitude grating ___ Inputintensity

o NN NN n Mmoo LIS o R B e R o RN 1 SO (R o B The illuminating intensity is uniform, i.e.
. Iijjum(z) =1
o7 & 1 The input intensity after the transparency is
5 = 74
) 2 Iin(x) = illum(x) X |gt(x)|
X 05F 1 & 05F 1 . o . . .
> =+ (since the transparency is binary, i.e. either
. ON (bright) or OFF (dark) and the illumination
025 1 o2 ] is also uniform, the input intensity is either 0
or 12=1, i.e. it has the same binary
S EN N e a0 s 0 5 o 5 B % @ dependence on x as the input transparency.)
X [um X [um
pupilmask ATF OTF
1t 1 1+ — s
vs V3 | (1| V8 f v3 w3 1 V3 V3
4ir 27 3 2 A 2 O 25 4x
AO.75- e 0.75F _2nd _1St DC +1St +2I’]d 0.75F _2nd —1St +1St +2nd
E;/ 3 |-3d ‘\ / +3rd 3 |-3d +3rd
) £ = ¥oq I o5
% A ©
0.25f 1 0.251 025}
0 0
0 T3 25 2 15105 0 05 1 15 2 25 3 8706-05-04-03-02-01 0 01 02 03 04 05 06 07 87 06050403-02-01 0 0.1 02 03 04 05 06 07
X" fem] ufum™) ufum™']
H(u) = gpm(z" /A f1) H(u) = H(u)* H(u)
GP™(u) = Gi"(u) x H(u)
h d V3 2z’ V3 2!
_ §+OX (;/_7:5 (U/—Olﬂm_l)‘i‘;/—;é (u—i‘olﬂm_l)) Iout<$) 3 + 9 X <47reXp {Z27"10 }+ 4 eXp{ Z27T10Mm}>
I 2z’
i 3 3 = -4+ — 12
2 % (%5 (u—2x 0.1um~1) + 4£6 (u+2 x 0.1,um_1)> . 3 T g R <z Wloum)
/I T



Example: band pass filtering a binary amplitude grating

with snatiallv incoherent illinminatinn

binary amplitude grating. inputintensity outputintensity

1+ — — — — — — — . s — — — — — — — .
0.75F 4 ; 0.75F 1
3 E El - contrast=0.1034
= = < 02 1
E 1Toso % Compare with the
= coherent case wk10-b-11
0.251 . 0.25} 01
0 —36 —25—2‘0 —15—16 -5 6 5 16 15 26 25 3‘0 0 —3‘0 -25 —2‘0—15—1‘0 -5 6 5 1‘0 15 2‘0 25 3‘0 0 _3‘0 _2‘5—2‘0 —1‘5 —1‘0 —é (5 é 16 1‘5 éo és 3‘0
X [um] X [um] X’ [um]
pupilmask ATF OTF
1t 1 1+ — 1 1
VERRERE B EY B BV V3 V3 1 V3 V3
A7 = 27 3 2 4w A 7 ) 27  Am
/_\0_75_ : 1 0.75f _2nd —1st DC +1St +2I"Id 1 0.75 _2nd _1st D +1St ‘+2‘nd
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Numerical comparison of spatially coherent vs incoherent imaging

physical aperture coherent imaging

Pinhole, radius 1Tmm Filtered with pinhole, radius 1mm

0 ! . 05 0 05
x"(mm) x'(mm)

Pinhole, radius 0.5mm Filtered with pinhole, radius 0.5mm

0
X'(mm)

incoherent imaging

Incoherent with pinhole, radius Tmm

MiT

0
x'(mm)

Incoherent with pinhole, radius 0.5mm




Qualitative comparison of spatially coherent vs incoherent imaging

* Incoherent generally gives better image quality:
— no ringing artifacts
— no speckle

— higher bandwidth (even though higher frequencies are attenuated
because of the MTF roll-off)

 However, incoherent imaging is insensitive to phase objects

« Polychromatic imaging introduces further blurring due to chromatic
aberration (dependence of the MTF on wavelength)
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