
Today


•	 Temporal and spatial coherence 
•	 Spatially incoherent imaging 

–	 The incoherent PSF 
–	 The Optical Transfer Function (OTF) and


Modulation Transfer Function (MTF)

–	 MTF and contrast 
–	 comparison of spatially coherent and incoherent imaging 

next two weeks 
•	 Applications of the MTF 
•	 Diffractive optics and holography 
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Temporal coherence

Michelson interferometer If paths 1 & 2 are matched, then the 

random illumination recombined waveforms at the 
(not single color anymore) detector are correlated so they 

produce interference fringes.detector waveform from path 2, However, as the difference d2−d1 

d2 

0 2 4 6 8 10
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

t [µ sec]

E(
t) 

[a
.u

.]

0 2 4 6 8 10
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

t [µ sec]

E(
t) 

[a
.u

.]

time delay t2=const+2d2/c	 increases, the degree of correlation 
decreases and so does the contrast 
in the interference pattern. 

interference no interference 
(fields add coherently) (fields add incoherently) 

point 

d1 

waveform at mirror 1,

time delay t1=const+2d1/c
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source 
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Spatial coherence
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Young interferometer 

waveform from hole 1, 
location x1 

waveform from hole 2, 
location x2 

x1 

random 
waveform x2 

matched paths 
(equal time delay 
from the two holes 

to the detector) 
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If holes 1 & 2 are coincident, or very 
closely spaced, then the 
recombined waveforms at the 
detector are correlated so they 
produce interference fringes. 
However, as the difference x2−x1 

increases, the degree of correlation 
decreases and so does the contrast 
in the interference pattern. 

interference no interference 
(fields add coherently) (fields add incoherently) 
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Field intensity in the coherent and incoherent cases


Perfectly coherent Perfectly incoherent 

Intensity 0<m<1 Intensity
2m×Ι0 

Ι0=Ι1+Ι2 Ι0=Ι1+Ι2 
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Coherent and incoherent sources and measurements

Temporally incoherent; 

spatially coherent 

➡ White light lamp (broadband; e.g., thermal)

 spatially limited by a pinhole


➡ White light source located very far away
 (i.e. with extremely small NA)
 e.g. sun, stars, lighthouse at long distance 

➡ Pulsed laser sources with extremely short
 (<nsec) pulse duration; supercontinuum sources 

Temporally & spatially 
incoherent 

➡ White light source
 at a nearby distance
 or without spatial limitation 

Temporally & spatially 
coherent 

➡ Monochromatic laser sources
 e.g. doubled Nd:YAG (best), HeNe, Ar+ (poorer) 

➡ Atomic transition (quasi-monochromatic)
 lamps (e.g. Xe) spatially limited by a pinhole 

Temporally coherent; also referred to as 
quasi-monochromaticspatially incoherent spatially incoherent 

➡ Monochromatic laser sources
 (e.g. HeNe, doubled Nd:YAG) with a rotating
  diffuser (plate of ground glass) in the
 beam path 

➡ Atomic transition (quasi-monochromatic)

 lamps (e.g. Xe) without spatial limitation


Optical instruments utilizing the degree of coherence for imaging 
➡ Michelson interferometer [spatial; high resolution astronomical imaging at optical frequencies] 
➡ Radio telescopes, e.g. the Very Large Array (VLA) [spatial; astronomical imaging at RF frequencies] 
➡ Optical Coherence Tomography (OCT) [temporal; bioimaging with optical sectioning] 
➡ Multipole illumination in optical lithography [spatial; sub-µm feature patterning] 
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Implications of coherence on imaging


•	 An optical system behaves differently if illuminated by temporally or 
spatially coherent or incoherent light 

•	 Temporally incoherent illumination is typically associated with white light 
(or, generally, broadband) operation [Goodman 6.1.3] 
–	 for example, chromatic aberration is typical evidence of temporal 

incoherence 
•	 The degree of spatial coherence alters the description of an optical 

system as a linear system 
–	 if the illumination is spatially coherent, the output field (phasor) is 

described as a convolution of the input field (phasor) with the 
“coherent” PSF h(x,y) 
(as we already saw) 

–	 if the illumination is spatially incoherent, the output intensity is 
described as a convolution of the input intensity with the 
“incoherent” PSF hI(x,y) 
(as we are about to see) 
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Spatially coherent imaging with the 4F system

pupil 
mask 

co
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cto
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output 
field 

arbitrary complex 
input transparency 

gt(x,y) 

input field 

spatially coherent 
illumination 
gillum(x,y) 

0 

gPM(x”,y”) 

reduced 
coordinates 

diffraction from the diffracted field diffracted field wave converging 
input field after objective after pupil mask to form the image 
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at the output plane
Illumination: Input transparency: 
Field to the right of the input transparency (input field): 

Pupil mask: Amplitude transfer function (ATF): 

Point Spread Function (PSF): 
in actual coordinates 

in reduced coordinates 

Output field: in actual coordinates 

in reduced coordinates 



Spatially coherent imaging with the 4F system

pupil 
mask 

co
lle

cto
r

ob
jec

tiv
e 

output 
field 

“Young” 
input transparency 

diffraction-limited 
image of lower hole 

field from 
hole 1 (upper) 

0 

gPM(x”,y”) 

reduced 
coordinates 

diffraction-limited 
image of lower hole 

+ 

spatially coherent 
illumination 
gillum(x,y) 

field from diffracted field diffracted field 
hole 2 (lower) after objective after pupil mask 

coherent 
superposition 

Since the incoming illumination is spatially coherent, the diffracted images add up as phasors, i.e.
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Spatially incoherent imaging with the 4F system
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diffraction-limited 
image of lower hole 

field from 
hole 1 (upper) 

0 

gPM(x”,y”) 

reduced 
coordinates 

diffraction-limited 
image of lower hole 

+ 

spatially incoherent 
illumination 

Iillum(x,y)=|gillum(x,y)|2 

“Young” 
input transparency 

field from diffracted field diffracted field 
hole 2 (lower) after objective after pupil mask 

incoherent 
superposition 

Since the incoming illumination is spatially incoherent, the diffracted images add up in intensity, i.e.


MIT 2.71/2.710 
04/29/09 wk12-b- 9 

there is no 
interference term, or “cross-term” 
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Spatially coherent vs incoherent imaging:

two point sources
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Spatially incoherent PSF of the 4F system

pupil 
mask 

diffracted field 
after objective 

diffracted field 
after pupil mask 
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reduced 
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Iillum(x,y)=|gillum(x,y)|2 

diffraction from the 
input field 
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input intensity 

Generalizing the principle of coherent superposition in the case of an arbitrary complex input transparency, 
we find that the intensity at the output plane is 
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Derivation of the Optical Transfer Function (OTF)
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The iPSF is the modulus squared of the cPSF 

and then 
we write each term as a Fourier integral 

combine the integrals and 
rearrange the order of integration 

define new integration variables 

rearrange the order of integration 

observe that this expression is again 
a Fourier integral 

correlation integral 



Example: 1D OTF from ATF 
1 H(u)

1 H(u) 
1 u u 

–u u −2u –u u 2u max max max max max max 
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Examples: ATF vs OTF in 2D


rectangular aperture 
ATF 

circular aperture 
ATF 

OTF OTF 

MIT 2.71/2.710 
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Fig. 6.3, 6.7, 6.9 in Goodman, Joseph W. Introduction to Fourier Optics. Englewood, CO:Roberts & Co.,
2004. ISBN: 9780974707723. (c) Roberts & Co. All rights reserved. This content is excluded from
our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.
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Terminology and basic relationships


coherent

Point Spread Function PSF


incoherent

Point Spread Function iPSF


Amplitude Transfer Function ATF

(coherent illumination)


physical meaning: optical field produced 
when the illumination is a point source 

physical meaning: intensity produced 
when the illumination is a point source 

in the 4F system: mathematically 
identical to the pupil mask gPM(x”,y”), 
within a coordinate scaling operation 

autocorrelation 
of the ATF 

Optical Transfer Function OTF

(incoherent illumination)


modulus 
of the MTFModulation Transfer Function MTF


(incoherent illumination)
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Block diagrams for coherent and incoherent

linear shift invariant imaging systems
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OTF 

multiplication 



Interpretation of the MTF /1 
Consider a grating whose amplitude transmission function is: 

where φ(x) is an arbitrary phase function.


If illuminated uniformly, the intensity past the grating is:


The Fourier transform of this intensity transmission function is:


The output of an optical system with 1:1 magnification resulting from this sinusoidal input signal is:
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Interpretation of the MTF /2


Since the incoherent point-spread function is positive, its Fourier transform 

must be Hermitian, i.e. it must satisfy the relationship (show this!) 

A complex function with this property is called Hermitian; therefore, the OTF of a 
physically realizable optical system must be Hermitian. 

Therefore, after some algebraic manipulation, and using the normalization 
we find that the intensity image at the output of the optical system is: 

Recall the definition of contrast


which for our case is applied as


We conclude that the value of the MTF at a given spatial frequency expresses the contrast at 
that spatial frequency relative to the contrast of the same spatial frequency in the input 
intensity pattern. The contrast change is the result of propagation through the optical system, 
including free space diffraction and the effect of the pupil mask. 
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Interpretation of the MTF /3


Graphical interpretation: (assuming m=1)


u

1 

u 

I(x’) 

Imax 

Imin x’ 

1 c Λ 
u0 =− u0 Λ 
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Diffraction limited vs. aberrated OTF

ideal thin lens, 

finite circular aperture 

2u–2u

1 

ideal thin lens, 
finite rectangular aperture 

diffraction limited 

realistic lens, 
finite aperture 
& aberrations 

(MTF) 

u–u 0 

u 

normalized polar 
spatial frequency 

diffraction limited 

realistic lens, 
finite aperture 
& aberrations 

Goodman p. 146max max max max 

umax is the cutoff frequency of the corresponding


coherent imaging system.


➡ In a diffraction limited optical system with clear rectangular aperture and no aberrations, using spatially 
incoherent illumination, the contrast (fringe visibility) at the image of a sinusoidal thin transparency 
of spatial frequency u0 decreass linearly with u0, according to the triangle function 
➡ In a diffraction limited optical system with circular aperture, the contrast decreases approximately linearly 
with u0, according to the autocorrelation function of the circ function 
➡ In an aberrated optical system, the contrast is generally less than in the diffraction limited system of the 
same cut-off frequency. 
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Fig. 6.9b in Goodman, Joseph W. Introduction to Fourier Optics. Englewood, CO:Roberts & Co.,
2004. ISBN: 9780974707723. (c) Roberts & Co. All rights reserved. This content is excluded from
our Creative Commons license. For more information, see 
 http://ocw.mit.edu/fairuse.
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Example: band pass filtering a binary amplitude grating

with spatially incoherent illumination


quasi-
monochromatic 

spatially 
incoherent 

illumination, 
uniform intensity 

pupil 
mask 

co
lle

cto
r

ob
jec
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output 
intensity 
contrast? 

input transparency 
binary amplitude 

grating 

Consider the optical system from lecture 19, slide 16, with a pupil mask consisting of two holes, each of 
diameter (aperture) 1cm and centered at ±1cm from the optical axis, respectively. Recall that the wavelength 
is λ=0.5µm and the focal lengths f1=f2=f=20cm. However, now the illumination is spatially incoherent. 

➡ obtain the ATF as 

➡ obtain the OTF H(u) as the autocorrelation of H(u) and multiply the OTF by GI(u)


What is the intensity observed at the output (image) plane? 
The sequence to solve this kind of problem is: 
➡ calculate the input intensity as and calculate its Fourier transform 


➡ Fourier transform the product and scale to the output plane coordinates x’=uλf2 
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Example: band pass filtering a binary amplitude grating
with spatially incoherent illumination 

The illuminating intensity is uniform, i.e. 

The input intensity after the transparency is 

(since the transparency is binary, i.e. either 
ON (bright) or OFF (dark) and the illumination 
is also uniform, the input intensity is either 0 
or 12=1, i.e. it has the same binary 
dependence on x as the input transparency.) 

−0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.25

0.5

0.75

1

u [µm−1]

O
TF

(u
) [

a.
u.

]

OTF

−0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.25

0.5

0.75

1

u [µm−1]

AT
F(

u)
 [a

.u
.]

ATF 

−30 −25 −20 −15 −10 −5 0 5 10 15 20 25 30
0

0.25

0.5

0.75

1

x [µm]

g t(x
) [

a.
u.

]

binary amplitude grating 

−30 −25 −20 −15 −10 −5 0 5 10 15 20 25 30
0

0.25

0.5

0.75

1

x [µm]

I in
(x

)=
I illu

m
(x

)|g
t(x

)|2  [a
.u

.]

input intensity 

+1st +2ndDC−2nd −1st 

+3rd−3rd 

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3
0

0.25

0.5

0.75

1

x’’ [cm]

|g
P(x

’’)
|2  [a

.u
.]

pupil mask 

+1st +2ndDC−2nd −1st 

+3rd−3rd 



Example: band pass filtering a binary amplitude grating

with spatially incoherent illumination
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Compare with the 

coherent case wk10-b-11 
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Numerical comparison of spatially coherent vs incoherent imaging 

24 

physical aperture 

f1=20cm 
λ=0.5µm 

coherent imaging incoherent imaging 



Qualitative comparison of spatially coherent vs incoherent imaging


•	 Incoherent generally gives better image quality: 
–	 no ringing artifacts 
–	 no speckle 
–	 higher bandwidth (even though higher frequencies are attenuated 

because of the MTF roll-off) 
•	 However, incoherent imaging is insensitive to phase objects 
•	 Polychromatic imaging introduces further blurring due to chromatic 

aberration (dependence of the MTF on wavelength) 
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