Overview

« Last lecture:
— spherical and plane waves
— perfect focusing and collimation elements:
 paraboloidal mirrors, ellipsoidal and hyperboloidal refractors
— imperfect focusing: spherical elements
— the paraxial approximation
— ray transfer matrices
 Today:
— paraxial ray tracing using the matrix approach
— thin lenses
— focal length and power of optical elements
— real and virtual images
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Ray transfer matrices

B A

i Nright = Tleft

optical
axis

Nieft

0 " 1 Nright — MNleft
Tright Qright . Neft Xleft Nright Cright o - Neft Cleft
| _ R
Tright 1 Lleft Lright 0 i Lleft

Nieft

Propagation through uniform space: Refraction at spherical interface:
distance 4, index of refraction et radius R, indices e, #right

By using these elemental matrices, we may ray trace through an arbitrarily long cascade
of optical elements (provided the paraxial approximation remains valid throughout.)
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Spheres, ellipsoids, hyperboloids, and paraboloids
in the paraxial approximation

The ovoid equations on the xz cross—sectional plane

A
¥ o—hyperboloid are of the following form:
o——sphere sphere: 2+ 22 =r%
i i X . e 28
o\e”|pSO|d ellipsoid: = - 22 = I
. a8 8
all ovoids look alike hyperboloid: ~ —5 — .3 =1;  and
in the paraxial regime

paraboloid: Z = cas.

»
L

- Any surface with rotational symmetry around the z axis,

including the ovoids, can be expressed in the Taylor—series form
2:02x2+04x4+06x6+...

Therefore, they are all well approximated as paraboloids
for |z| sufficiently small compared to
the radii of curvature.

This observation reassures us that the equations that we derived
are applicable to any rotationally symmetric surface,
within the paraxial approximation.
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Sign conventions

« Light travels from left to right

« Aradius of curvature is positive if the surface is convex towards the left
« Longitudinal distances are positive if pointing to the right

« Lateral distances are positive if pointing up

« Ray angles are positive if the ray direction is obtained by rotating the
+2 axis counterclockwise through an acute angle

positive negative
curvature curvature

3 positive negative
posive ~___—~—_ i [ rayangle negative  ray elevation

ray elevation direction / optical axis

positive
direction TN T LT negative
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Types of refraction from spherical surfaces

» Positive power bends rays “inwards”
R>0

1 n

+

Positive power

* Negative power bends rays “outwards”

Negative power
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Example: thin spherical lens in air

Radius Rjeft Radius Ryight Radius Rjest

ooooooooooooooooooooooooo .o........---:------------------ccccccc; aright B 1 _ . nal
Thin or thick? : ( Tright ) =1 leght ( T )
truncated :
spherical surface : 2 — il
& : noy b & e
& ; = Rieft
Qmax max > Z1 0 1 Lot
The “thickness” of the truncated spherical element is . ik - L~ & ik 4
: Cright _ R R Qleft
p = o = right left 7
t = R — Rcos ¢ = 2Rsin? = " 0 ) 0 1 -
In the paraxial approximation : 1 1
’ : — 1 —(n—l) B —R - ( Uleft )
. » t ight
amax << 1 = qsmax << 1 and t ~ O (¢)2) — t ~ 0 N O 1 K "8 xleft

That is, the thickness is negligible.
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Example: thin spherical lens in air

Loy =aif

optical
axis

Note that, if the indeces of refraction
to the left and right of the lens are the same,
then a ray going through the optical center of the lens
emerges parallel to the incident direction.
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ik
< Qi ) 1 B < Qleft >
g -
right 0 i Lleft

p 1 ( 1) < 1 1 )
=-=(n-— —
§ Riere  Reight

Consider a ray arriving from infinity at angle a; = 0

(i.e., parallel to the optical axis) and at elevation x.

The ray is refracted by the thin lens and propagates

a further distance z to the right of the lens.
We seek to determine its elevation xo and angle of propagation s
as function of z. We use the matrix approach:

a2
T2

& @ , & : _% (
b TS,

g 0 1 1 ¥
:>932:a1z+x1(1—§):x1<1—§>

We observe that at z = f = x5 = 0 for all xq;
i.e., all the rays from infinity converge to the optical axis
independent of the elevation x; at arrival.
We say that the plane wave from infinity comes to a focus
at z = f, and f is referred to as focal length of the thin lens.

Lens maker’s
Equation

65
X1

(since a3 = 0.)

is the lens power, measured in Diopters [m™'].

f

We can easily see that if a; # 0, the rays still come to a focus

at distance z = f to the right of the lens, at elevation x2 = a1 f.

This is the image of the (off-axis) source at infinity.
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Types of lenses

» Positive lenses have positive power < positive focal length

R>0 R=00
1| n 1\
+ N
Simple spherical Plano-convex Bi-convex
refractor (positive) lens lens

* Negative lenses have negative power < negative focal length

R<O R=w0 R<0 R>0
1 | n | I|n|l
— N — —
Simple spherical Plano-concave Bi-concave
refractor (negative) lens lens
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Real and virtual images of a source at infinity

« Apositive lens creates a real image of an object at infinity

R>0 ,——\ R<0 (converging spherical wave)
/ : real image

f is the distance to the image;
since f > 0, the image is formed

| @’/1 f to the right of the lens.

Bi-convex
lens

) A

* A negative lens creates a virtual image of an object at infinity

R<0 ~— >()
since f < 0, the (virtual) image is formed : v
to the left of the lens.

virtual image
(diverging spherical wave) Bij-concave
lens
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Image at infinity of real and virtual sources

« A positive lens will image a real object at infinity (collimate a diverging

(diverging spherical wave) R>0 ~—— R<0 spherical wave)

real source

R Ve

Bi-convex
lens

* A negative lens will image a virtual object at infinity (collimate a converging
spherical wave)

virtual source
Bi-concave (converging spherical wave)

lens
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How to make sense of the sign conventions

« Recall: light propagates from left to right; therefore:
« if an object is to the left of the optical element

— then the distance from the object to the element is positive;
« if an object is to the right of the optical element

— then the distance from the object to the element is negative;
« if an image is to the right of the optical element

— then the distance from the element to the image is positive;
« if an image is to the left of the optical element

— then the distance from the element to the image is negative;
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object to the left object to the right image to the right image to the left
of the element of the element of the element of the element
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Sign conventions and off-axis objects

Consider an off-axis object at infinity,
generating a plane wave with propagation angle a4
wrt the optical axis. In slide #7,
we derived the expression xo = a1 f
for the lateral coordinate of the image.

Now consider an off-axis object placed at distance
z = f to the left of the lens so the image is at infinity.
We seek the propagation angle as of the exiting rays.

x1

object at infinity

To = a1 f

’E"

Lo >4

image at infinity

21
Ao = —7
E ag <0
x1 >0 :
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real image
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B

real object

& <d

virtual image

v

fa<40
virtual object
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