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Problem 1.  Refracting Surface (Modified from Pedrotti 2-2) 
 
Part (a) 
 
Fermat’s principle requires that every ray that emanates from the object and passes through the 
image point must be isochronous (i.e., have equal optical path lengths). 
 
The common optical path length (OPLcommon) can be easily found using the ray that passes along 
the optical axis from the object to the image point, while taking into account the refractive 
indexes of air (no) and glass (ni): 
 

OPLcommon = noso + nisi 
 
Let x and y be the horizontal and vertical coordinates, respectively, with the origin at the object 
point.  The optical path length (OPLarbitrary) of any arbitrary ray that emanates from the object at 
(0, 0) , enters the glass at coordinate (x, y), and then passes through the image point at (si + so, 0), 
can be found from the in-air propagation distance (do) and in-glass propagation distance (di), 
while taking into account the indexes of refraction: 

 
22 yxdo +=  

22)( yxssd ioi +−+=  
 

iiooarbitrary dndnOPL +=

 2222 )( yxssnyxnOPL ioioarbitrary +−+++=  
 

The correct refracting surface corresponds to all (x, y) such that OPLarbitrary equals OPLcommon. 
  

      commonarbitrary OPLOPL =  

iiooioio snsnyxssnyxn +=+−+++ 2222 )(  
 
Plugging in no = 1, ni = 1.5, so = 20 cm, and si = 10 cm: 
 

 35)30(5.1 2222 =+−++ yxyx  
 
Note:  This equation is only 2-dimensional. The 3-dimensional solution would be a radial-
symmetric surface, where each cross-section (through the vertex) follows the 2D equation.  
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Part (b) 
 
Below is a plot of the refracting surface using labels from Part (a). 
 

 
 
I found (x, y) coordinates on the surface by substituting do back into the surface equation, as 
follows: 
 

35)30(5.1 2222 =+−++ yxyx

35)(609005.1 2222 =++−++ yxxyx  

35609005.1 2 =+−+ oo dxd  
    222 )35()60900(5.1 oo ddx −=+−  

 
In this form, x can easily be found from do, and y can be found from x and do: 
   

2

222

5.160
)35()900(5.1

⋅
−−+

= oo ddx  

 
22 xdy o −=  

 
By choosing a series of values for do, I can calculate (x, y) coordinates that satisfy the original 
surface equation, as follows: 
 

do x y 
20 20 0 
21 20.90 ±2.07 
22 21.81 ±2.85 
23 22.75 ±3.38 

 
After calculating many closely-spaced (x, y) coordinates in this way, I was able to plot the 
refracting surface above with Matlab®.   
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Problem 2.  Ice-cream Spoon 
 

 
 

First, let’s define some variables: 
 

• Let s1 and s2  be the initial and final object distances, respectively. 
• Let s’1 and s’2 be the initial and final image distances, respectively. 
• Let m1 and m2 be the initial and final magnifications, respectively.   
• Let d be the distance moved by the mirror (initial to final) 

 
The described problem can be quantified by 5 equations with 5 unknowns ),,,,( 2121 fssss ′′ : 
  

Mirror equation at the initial object distance  
fss
111

11

=
′

+   Eq. 1  

Mirror equation at the final object distance  
fss
111

22

=
′

+   Eq. 2 

Magnification at the initial object distance  
1

1
1 s

sm
′

−=   Eq. 3 

Magnification at the final object distance   
2

2
2 s

sm
′

−=   Eq. 4 

Difference between initial and final distances  dss += 12   Eq. 5 
 
 
The system of equations can be solved for the unknowns as follows: 
 

Combine Eq. 1 and Eq. 2   
2211

1111
ssss ′

+=
′

+  
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Use Eq. 3 and Eq. 4 to remove s’1 and s’2 
222111

1111
smssms

−=−  

 

Use Eq. 5 to remove s2   
)(

1111

121111 dsmdssms +
−

+
=−  

   

Solve for s1     ( )
12

221
1 mm

mmmds
−
−⋅

=  

   
Solve for remaining unknowns  dss += 12   111 sms −=′  

       222 sms −=′   
11

11

ss
ssf
′+
′

=  

 
In this problem, we are given |d| = 2.5 cm, |m1| = 0.5, and |m2| = 1/3, but we are not given their 
signs (+ or -).  Fortunately, we can safely (but arbitrarily) set d = +2.5 cm.  After all, the sign of d 
should be inconsequential, since the solutions (to the system of equations) for d = ±2.5 will 
simply be the reverse of one another (left becomes right, right becomes left).  However, the 
solution to the system of equations will, indeed, depend on the signs of m1 and m2 (i.e., whether 
the images are inverted or not) 
 
The table below shows the solutions to the system of equations for all 4 combinations of m1 (+ or 
-) and m2 (+ or -).  The table reveals that, depending on the signs of m1 and m2, the mirror may 
take on a concave or convex geometry for the initial and/or final object-to-mirror distances.  As 
highlighted below, only the last combination of m1 (-0.5) and m2 (-1/3) conforms to the premise 
of the problem (i.e., that the ice-cream spoon is being used as a concave mirror). 
 

Knowns Solution to System of Equations 
(in centimeters) Mirror Geometry 

do (cm) m1 m2. s1 s2 s'
1 s'

2 f 
2.5 0.5 1/3 2.5 5 -1.25 -1.67 -2.5 Convex mirror for initial and final distances 
2.5 0.5 -1/3 -0.5 2 0.25 0.67 0.5 Convex for initial; concave for final 
2.5 -0.5 1/3 -1.5 1 -0.75 -0.33 -0.5 Concave for initial; convex for final 
2.5 -0.5 -1/3 7.5 10 3.75 3.33 2.5 Concave for initial and final distances 

 
The position (p) of the image, relative to the object, at each object-to-mirror distance is: 
 

p1 = s1 – s’
1 = 7.5 cm – 3.75 cm = 3.75 cm 

p2 = s2 – s’
2 = 10 cm – 3.33 cm = 6.67 cm 

 
Thus, the answers to the specific questions are: 

• When the spoon moved 2.5 cm (i.e., s2 – s1) further away from the object, the image 
moved 2.92 cm (i.e., p2 – p1) further away from the object. 

• The focal length of the spoon concave mirror is 2.5 cm.  
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Problem 3. Horse and Camera

Part (a)

The image distance of the horse’s nose (s’nose) can be found with the thin-lens equation, given the 
object distance of the horse’s nose (snose = 15 m) and the focal length of the thin lens (f = 3 m):

1 1 1 s ⋅ f 15 ⋅3 45
+ =  s′ se

s sno f nose =
no = = = 3.75

nose ′ se snose − f 15 − 3 12

The height of the image of the horse’s nose (h’nose) can be found with the magnification equation,
given the height of the horse’s nose (hnose = 2.25 m):

sno′ e 3 75m = − s .
= − = −0.25

snose 15
h '

m no′= se  hno′ se = mhnose = −0.25 ⋅ 2.25 = −0.5625
hnose

Thus, the image of the horse’s nose is located 3.75 m to the right of the lens and 56.25 cm below 
the optical axis.

Part (b)

The magnification is m = -0.25. In the vertical direction, the image is inverted, as indicated by 
the negative magnification.  In other words, the horse appears upside-down. In the horizontal 
direction (as calculated in Part (d)), the horse’s tail comes to focus closer to the lens than the 
horse’s nose does.  In other words, the image of the horse’s tail is to the left of the image of the 
horse’s nose.  The graph above shows the orientation of the image (but not to scale), as described 
here.
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Part (c) 
 
 
The image is 56.25 cm tall (but inverted), as calculated in Part (a). 
 
 
 
Part (d) 
 
The image distance of the horse’s tail (s’tail) can be found with the thin-lens equation, given the 
object distance of the horse’s tail (stail = 17.5 m) and the focal length of the thin lens (f = 3 m): 
 

fss tailtail

111
=

′
+     62.3

5.14
5.52

35.17
35.17

≈=
−
⋅

=
−
⋅

=′
fs
fss

tail

tail
tail  

 
The length of the image (L) can be calculated as follows: 
 

L = s’nose – s’tail = 3.75 – 3.62 = 0.13  
 
 

 
Thus, the image of the horse is 13 cm long (from nose to tail). 
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Problem 4.  Prism Pair 
 

 
 
Part (a) 
 
At the first surface of the prism, the angle of incidence is zero, so no refraction occurs.  At the 
second surface, as indicated in the drawing, the angle of incidence is α and the angle of refraction 
is (α + θ).  Snell’s law then gives the relation among θ, α, and n (assuming the index of 
refraction of air is 1): 
 

)sin()sin( θαα +=n   for 





< −

n
1sin 1α  

 

If 





≥ −

n
1sin 1α , then total internal reflection (TIR) occurs and the rays must cross the bottom 

interface of the prism to escape. Thus, the geometry of the original prism pair becomes invalid.   
 
 
Part (b) 
 
As indicated in the drawing, the length (L) over which the beam intersects the second surface of 
the prism is: 
 

)cos(α
inhL =  

 
The width of the beam after the prism is: 
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     inhLh
)cos(

)cos()cos(
α
θαθα +

=+=  

Thus, the width of the beam is reduced by a factor (r) of: 

)cos(
)(sin1

)cos(
)cos( 2

α
θα

α
θα +−

=
+

=r  

 
To remove θ from the equation, we can substitute in the relation from Part (a):  
 

)cos(
)(sin1 22

α
αn

r
−

=  

 
The second prism simply repeats the same process, giving a total reduction factor of r2. 
 
Thus, the reduction factors (r1 and r2) after the first and second prism, relative to the initial beam 
width, are: 
 

)cos(
)(sin1 22

1 α
αn

rr
−

==   for 





< −

n
1sin 1α  

 

)(cos
)(sin1

2

22
2

2 α
αnrr −

==   for 





< −

n
1sin 1α  

 
  
Note:  For sufficiently small α, then sin(α) ≈ α,  sin(α + θ) ≈ α + θ, and cos(α) ≈ 1.  The answers 
to the problem could then possibly be approximated as follows: 
 

θαα +≈n   αθ ⋅−≈ )1(n  
 

22
1 1 αnrr −≈=    

222
2 1 αnrr −≈=  
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Problem 5.  Two Thin Lenses 
 
The focal length of a combination of two thin lenses (f1 and f2), separated by distance d, is: 
 

2121

111
ff

d
fff
−+=     

dff
fff
−+

=
21

21  

 
Plugging in f1 = 20 cm, f2 = -8 cm, and d = 15 cm: 
 

15820
)8(20

−−
−⋅

=f = 53.33 cm 

 
The distance from the negative lens to the film plane should equal the distance past the negative 
lens at which a horizontal, collimated beam would come to focus.  This can be determined as 
follows.  The matrix (Msystem) representation of the two-lens system is 
 















−−−

−
=












−




















−=

22121

1

12
111

1
11
01

10
1

11
01

f
d

ffff
d

df
d

f

d

f
M system  

 
The vector (xin) representation of a ray that has a height of 1 and is parallel to the optical axis 
(i.e., corresponding to a horizontal collimated beam) is: 
 









=

0
1

inx  

 
If xin is sent into the two-lens system, the output ray (xout) would be: 
 















−−

−
==

2121

1
11

1

ffff
d

f
d

xMx insystemout
  

 
 If xout is allowed to propagate a distance (L) past the negative lens, the resulting ray (xfocus) 
would be: 
 

















−−






 −−⋅+−

=







=

2121

21211

11

111

10
1

ffff
d

ffff
dLf

d
x

L
x outfocus

  

 
The distance from the negative lens to the film plane should equal the L at which the height of 
xfocus is zero (i.e., xfocus(1) = 0): 
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0)1( =focusx        111
12121
−=





 −−⋅ f

d
ffff

dL  

 






 −−

−
=

2121

1

11

1

ffff
d

f
d

L  

 

)(
)(

21

12

ffd
fdfL

+−
−

=  

 
Plugging in f1 = 20 cm, f2 = -8 cm, and d = 15 cm: 
 

)820(15
)2015(8

−−
−⋅−

=L =13.33 cm 

 
If a distant object subtends 2 degrees at the camera, then that means: 
 

)2tan( =
o

o

s
h  

 
The magnification formula says: 
 

o

i

o

i

s
s

h
hm −==     o

i

i
o s

s
hh −=  

 
Plugging in so = f = 53.33 cm (since the film plane is at the focus of the system): 
 

ho = -tan(2º) ·53.33 = -1.86 
 
 

Thus, the image of a 2 degree distant object is 1.86 cm tall. 
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