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1. Optical path length calculation using a thin lens 

Figure 1. 

a) The thin lens approximation can be applied to the lens maker’s equation as: 

Alternatively, the same results can be obtained from the ABCD matrix of the lens: 
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, which gives BFL = -A/C and FFL=-D/C. 
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How much simplification is acceptable in using the paraxial approximation (small angle approximation)? 

 The effect of the paraxial approximation on the angle 

The small-angle approximation is a useful simplification of the basic trigonometric functions which is 

approximately true in the limit where the angle approaches zero. They are truncations of the Taylor series for the 

basic trigonometric functions to a second-order approximation. 

In all cases, the order of the error is limited to be above 3( )O  . Whether you choose to work with the original 

trigonometric functions or choose to work with alternative form such as 21  , you can make sure that the 

linear and quadratic terms of are preserved. 

 The effect of the paraxial approximation on the lateral displacement x 

In the paraxial approximation, the longitudinal and lateral dimensions can be also simplified using the fact 

that x is smaller than R and f. 

2
 



  

 
 

    

 

           

         

     

2 2 21
1 2( tan ) 1e )s c (OPL f f f f       

             

        

 

 

  in inx f x

f f


 


       

2 2 2
3

2
2

2( )  1
2

in
in

x
OPL f f

f
f x f

 
     


 


  

             

 

 

     

 xinf    

 2 2 2
1

21
22 ( ) ( ) 0( ) 2 ( ) / .i

n
chief nn inf

f n R d f fOPL R x fn dx


          

  

 

      0inx f     

2014 2.71/2.710 Optics, Solution for HW3 

b) Calculate the OPL for an arbitrary paraxial ray. 

Let us denote the path length inside air before the lens as OPL1, the path length inside the lens as OPL2, and the 

path after the lens as OPL3. For the three components, we know the distance of travel in z direction. For an 

arbitrary paraxial ray leaving inx at an angle  , we can write: 

. 

From the fact that the lens is thin, we can safely assume that the lateral height of the ray entering and leaving the 

lens stays the same. Also, we can neglect the small distance traveled in air in front of the lens, between OPL1 and 

OPL2, illustrated in the blue arrow in figure 1. 
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Lastly, we can obtain the angle of the ray coming out of the lens to be . Therefore, 

. 

Note that the OPL3 for all rays are identical, regardless of the angle. The wavefront plot in d) will clarify this fact 

further. Summing up the optical path lengths gives: 
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Note that the terms that are proportional to the quadratic order of  are not crossed out. 

c) For the chief ray, , which gives 

Since a negative term is zero for a chief ray, it is longer than most other rays with 
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Setting inx to be positive, the chief ray is longer for , which corresponds to inx

f
  . 
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