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2.71/2.710 Optics     Spring ’12 
Quiz #2 Solutions                             

 

1. A Lloyd Mirror Interferometer. The Lloyd mirror is a wavefront-splitting 
interferometer.  It consists of a flat glass mirror that reflects a portion of wavefront that 
comes from a narrow slit. Another portion of the wavefront proceeds directly to the 
screen. The interference of the two wavefronts form a set of bright and dark fringes that 
can be measured on the screen. 

 
In our problem, let’s assume the mirror is placed at the plane x = 0 and illuminated by a 
spherical wave originating from the slit at location (x0, −z0) (where x0, z0 > 0). Using the 
paraxial approximation for a 1D spherical wave (y=0), 

         

              

       
      

      
 

       
  

a)  (10%) The reflected wavefront from the mirror can be considered as spherical wave 
radiation from a virtual source. Using your knowledge from geometric optics, determine 
the origin of the virtual source that radiates such spherical wave. 

b) (15%) The source illuminating the slit has a wavelength of 500nm in air. If the slit is 
positioned at x0=1mm above the flat mirror, and the screen is placed 1 meter away from 
the slit, please estimate the spacing of the fringes on the screen.  

c)  (15%) In order to find the relative amplitude and phase of the virtual source with 
respect to the original spherical wave, we have to consider the Fresnel equations for 
reflected waves.   
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For simplicity, let’s assume the E-field of source is polarized in the y-direction (S-
polarization) and the slit is placed near the x=0 plane (x0<<z0, so qi=qr-->90o).  Using 
these assumptions and based on the reflection coefficient for S-polarization at air-glass 
interface 

   
   

   
 

               

               
 

And              
                             

         (nair=1, nglass=1.5),  

Please estimate the relative amplitude (i.e.      )and phase (i.e. arg(rs)) of the virtual 
source when qi approaches 90o. 

 
*d) (10%) Using the result you obtained from c), show that the fringe pattern is dark at x=0 

on the screen. 

Solution: 

a) (4 pts) By using the law of reflection to draw a few rays leaving the slit, it can be readily 
that there is a virtual point source located at:  

                  [1-1] 

b) (6 pts) The observed fringe pattern will be described by determining the intensity at the 
observation screen.  This can be done by finding the total field at the screen by 
superimposing the waves from both the actual and virtual 1D point sources.  Using the 
equation provided for a 1D paraxial spherical wave, the wave leaving the actual point 
source is: 

             
  

       
          

  
      

 

        [1-2] 

Likewise, the virtual point source originates from the location found in part (a): 

              
   

       
          

  
      

 

        [1-3] 

(A is reflection coefficient to be determined by part (c), we will show A=-1 in this case) 
Adding Equations [1-2] and [1-3] yields the field at the observation screen, located at a 
location        away from the slits: 

                                      

          
  

       
           

  
      

 

          
  

      
 

         
[1-4] 

Equation [1-4] can be simplified by expanding the quadratics in the exponentials of the 
bracketed term. 

          
  

       
           

  
          

 

          
  

          
 

         [1-5] 

          
  

       
          

  
      

  
         

   
   
       

  
   
      

[1-6] 
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[1-7] 

 
For fringe spacing we can focus on Equation [1-7], which is further reduced by using the 

formula:                :  

          
  

       
          

  
      

  
              

   

          
 

        
   

   
       

[1-8] 

It can be seen from equation [1-8] that the field will be a maximum or minimum 
whenever the cosine term is n  (where              For simplicity, take A = 1 to 
determine the fringe spacing.  Now that the field is known, the intensity can be found: 

                            
  

 
  

       
          

  
      

  
             

   

          
   

 
  

        
           

   
      

  
             

   

          
    

[1-9] 

            
  

    
 
 

     
   

          
   [1-10] 

Using the identity       
 

 
         , Equation [1-10] becomes: 

            
  

    
 
 

       
   

           
    [1-11] 

The denominator of the cosine term in Equation [1-11] is the spatial wavelength of the 
interference pattern.  Therefore, the spacing between the fringes at the observation 
screen is: 

  
       

   
 

               

          
                  [1-12] 

Alternatively, if we draw two rays from the slit and its virtual image, and let them 
intersect on the screen at the point (x’, z), we come up with the following path 
differences: 

             
        

          
        

  [1-13] 

Under paraxial limit, z+z0>> x, x0, so we can use the approximation:         
  

 
 

              
       

 

       
            

       
 

       
   [1-14] 

     
      

       
 
        

         
    [1-15] 
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 [1-16] 

In addition, the reflection may introduce a phase shift (as shown in part (c)). 
Nevertheless, if the difference in the path lengths are integer values of the 
wavelength,        , then constructive interference will occur at that point on the 
screen: 

   
      

    
,   [1-17] 

Therefore, the distance between two bright spots is given by 

  
       

    
      

       

   
        [1-18] 

 
c) (6 pts) The reflection coefficient can be determined using the equation provided. First 

consider the wave numbers at       and                   : 

             
                  [1-19] 

and, 

                 
             

 

 
 
 

     
 

 
 [1-20] 

Substituting Equations [1-19] and [1-20] into the definition of the reflection coefficient 
provided: 

   
               

               
 

    
 
 

  
 
 
  

    [1-21] 

The magnitude of the reflection coefficient is therefore: 

       [1-22] 

We can make use of the Euler equation to find the phase: 

        
                            [1-23] 

d) (4 pts) Equation [1-22] informs us that the wavefront reflecting off of the glass mirror 
actually incurs a phase shift of 180° with respect to the wavefront incident on the glass.  
Therefore, we must account for this shift by adding a phase delay into the equation for 
the field emanating from the virtual point source. Equation [1-3] should be rewritten as: 

              
  

       
          

  
      

 

            
  

       
          

  
      

 

        [1-24] 

Therefore the field at the observation screen is instead: 

          
  

       
           

  
          

 

         
  

          
 

         [1-25] 

          
  

       
          

  
      

  
         

   
   
      

  
   
      [1-26] 

The term in the brackets of Equation [1-26] can be written as a sine using the relation 

     
 

  
    

 

  
    : 
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    [1-27] 

Therefore, the intensity at the observation screen is actually: 

                            
  

 
  

      
          

  
      

  
              

   

          
   

 
  

      
           

   
      

  
              

   

          
    

[1-28] 

            
  

    
 
 

     
   

          
   [1-29] 

From Equation [1-29] it is obvious that the intensity of the pattern at x = 0 is zero.  
Therefore, as expected, there will be a dark spot at the origin of the observation screen. 

            
  

    
 
 

           [1-30] 

 
 

2. Optical Fourier transforms.  

a) (20%)  Calculate the Fourier transform of the function: 

     
 

 
                    

   

 
   

b) (30%)  Assuming  = 10mm-1,  = 10m, design an optical system which at its output 
plane creates an exact replica of the Fourier transform of the previous question. 
Additional constraints on your design are: 

1. Your system should be designed for spatially and temporally coherent illumination 
consisting of a plane wave at wavelength  = 500nm, incident on-axis. 

2. You may only use “standard" optical elements such as lenses, gratings, prisms, and 
free-space propagation. 

3. The spatial frequency component u = 50mm-1 should be mapped at distance of 3 cm 
away from the optical axis at the output plane. 

Solution: 

a) (8 pts) The first step is to rewrite the cosine term of the expression provided as a set of 
exponentials: 

     
 

 
        

        
   

 
           

 
 

 
 

 

 
        

 

 
          [2-1] 

Now the convolution theorem can be used: 

               
    

 

 
 

 

 
        

 

 
          [2-2] 

      
 

    
    

    
 

 
     

 

 
    

 

 
  

 

 
    

 

 
   [2-3] 

Each delta function can be convolved with the exponential in a straightforward manner: 
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    [2-4] 

Equation [2-4] can be further simplified: 

     
 

    
  

    

   
 

 
 

       
 
  

 
   

   
 

 
 

       
 
  

 
   

    [2-5] 

     
 

    
 
    

     
 

 
 

   
 
   

    
     
     

    
      [2-6] 

     
 

    
 
    

      

   
 
   

      
   

       [2-7] 

Note that      
 

 , therefore an another way of writing Equation [2-7] is: 

     
 

  
 
  

   

   
 
  

    

   
 
   

      
   

       [2-8] 

b) (12 pts) There are always multiple ways to achieve the same output field.  You can achieve 
a Fourier transform by using a lens or by placing a screen far enough away from an input 
field such that the Fraunhofer diffraction pattern is produced, therefore, we must first be 
able to produce the provided field at the input plane:   

       
 

 
        

   

 
           

  [2-9] 

Since the input field described by Equation [2-2] should be the field immediately after the 
input transparency, it should be the product of an illumination field incident on the input 
plane and the transmission function of the object.  By inspection of Equation [2-2], we can 
recognize that the term in the braces has the form of a converging one dimensional 
spherical wave and the term in front of it corresponds to the transmission function of a 
sinusoidal grating of perfect contrast: 

                               
  

 

 
        

   

 
    [2-10] 

Since our system must use an on-axis plane wave as an input, we need to be able to 
convert it into a converging spherical wave.  This can be easily done with a one-
dimensional lens (i.e. a cylindrical lens) that is located less than one focal length in front 
of the sinusoidal grating.  However, care must be taken to relate the variable   to physical 
parameters in our system.  The general form of a paraxial spherical wave originating at 
        is: 

                
  

       
          

  
      

 

        [2-11] 

We can imagine that if the spherical wave is centered after the sinusoidal grating, the 
illuminating wavefront is a converging spherical wave when it strikes the grating at the 
input plane. 
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Therefore we can write the field for the converging spherical wave that corresponds to 
the above sketch as: 

                
  

            
               

  
  

             [2-12] 

Therefore the field at the input plane where     is: 

                
   

       
  

   
 

        
     

         [2-13] 

Note that equation [2-13] has the functional form we are interested in for the 
illuminating wavefront.  In order to make                            we must make 

sure that the amplitudes are equal and solve for   in terms of physical quantities, which 
can be done by comparing Equation [2-13] with [2-10]: 

                           

        
 

   

       
  

   
 

        
     

           
[2-14] 

In order to make the amplitudes equal: 

   

       
  

   
 

                       
   
 

        [2-15] 

Also comparing the quadratic exponentials:  

         
     

        
    

 

        
 [2-16] 

(Note, you could also set z1=0 and choose a lens with    
 

   ) 

Now that the input field has been created, we must decide whether to perform the 
Fourier transform with a lens or through far-field propagation.  In order to have a spatial 
frequency of u=50mm-1 mapped to a spatial location of x’ = 3cm at the output plane, we 
must have either a lens with the appropriate focal length or place the output screen at a 
particular distance from the input.   
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[2-17] 

Given the design choice, it is safer to use a lens since 1.2 meters might not be far enough 
for the far-field diffraction pattern to be fully developed.  Therefore, we will use a lens 
with a focal length of 1.2 meters and place it 1.2 meters behind the input plane and place 
the observation (output) screen 1.2 meters behind the lens.  

 
 

Solutions by MTK, Spring 2012 

Output

Plane

Plane-Wave 

Input

x’

z

Output

Plane

f2=1.2m

f1

Input

Plane

x

t(x)

z1
f2=1.2m



MIT OpenCourseWare
http://ocw.mit.edu

2.71 / 2.710 Optics
Spring 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

