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1. (Pedrotti 13-21) A glass plate is sprayed with uniform opaque particles. When a
distant point source of light is observed looking through the plate, a diffuse halo
is seen whose angular width is about 2°. Estimate the size of the particles. (Hint:
consider Fraunhoffer diffraction through random gratings, and use Babinet’s
principle)

Answer:
The diffraction pattern of an opaque circular particle is complementary to that due to
circular apertures of the same size in an otherwise opaque screen.
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For the given problem, we may further assume E(x, y) is a plane wave at normal
incidence, and the transmission function t(x, y) for a single particle can be expressed
as:
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Where R is the radius of the opaque particles.
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The halo is similar to an Airy disc!
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We can evaluate the width of the halo (a second peak) based on the table on Figure
11_08 provided by Pedrotti:

(a)

5

Y 1y = (27, (v)y)*
15t Maximum 0 1
1% Zero 3.832 0
2" Maximum 5.136 0.0175
2" Zero 7.016 0
3" Maximum 8.417 0.00416
34 Zero 10.173 0
4™ Maximum 11.620 0.00160
4™ Zero 13.324 0

(b)
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f 2
Wherey =R |k, + ky2 = TERG.

2T
TRAH =7.106 —3.832 = 3.274

From the above table,

Taking central wavelength at visible frequency, A = 500 nm and given A8 = 2°, we
find the radius of the particle:
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2. (Adapted from Pedrotti 16-1 and 16-12)
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Figure A. Recording (Left) and Reconstruction (Right) of a Gabor Hologram

a) Use the superposition of two beams to show that the recorded intensity
pattern on a Gabor zone-plate (the hologram of a point source) is given
approximately by

I = A+ Bcos?(ar?)
Where A=1 +1, — ZJE, B =4,/1,1,, and a = w/(2sA). Here I1 and I are
the intensity due to the reference and signal beams, respectively, s is the
distance of the object point from the film, and Ais the wavelength of the light.
For the approximation, assume the path difference between the two beams is
much smaller than s, so we are looking at the inner zones of the hologram.

Solution: in this problem, two beams are interfering at the zone plate: a reference
plane wave with intensity [1, and a spherical wave with intensity I>. Ata distance r
from the symmetric axis, the path difference of the two beams can be written as:

2
r
6=\/52+r2—szz

Therefore the intensity of the interference pattern can be written as:

I = Il + 12 + 2\111126'08(]{5)
And

k&
cos(kd) = 2cos? (7) -1

So we can rewrite the intensity into the following form:

kS
I=[L+1,—2/LL] +4JLI,cos? (7)
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b) (2.710 only) Show that the phase delay of the diverging subject beam, at a
point on the film at distance r from the axis, is given by 7r?/ls. This results
follows when r<<s. Show also that the amplitude of the light transmitted by
the film under illumination of the reference beam produces converging
spherical wavefront, thus a real image on reconstruction.

Answer:
The path difference § of the diverging beam with respect to the plane wave is
derived in part (a). Therefore the phase delay is:
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To answer last part of the question we can calculate the Fresnel diffraction pattern of
p q p
this system using k, = k x;’, k, =k y;’
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The Fourier transform of the first term is straight forward:
XY
exp| —i >/

Likewise, we can express the second and the third term:
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the 3rd term indicates a converging wave front towards z=s (a real image) on
the optical axis.

E(x',y)=~F {exp (ik
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3. As shown in Figure B, the input images t, (x, y)and a phase mask t,(x’,y") were
placed on the surface of the lens L1 and L. The focal length of the lens L1 is f1 =
2a and that of L2 is f2 = a. The spacing between L and L2 and the screen are all 2a.

a. Derive an expression for the light distribution on the screen.
b. (2.710 only) Can you suggest a possible application of such an

arrangement?
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Figure B. Optical information processing using 2 convex lenses

Answer:
a) This problem involves two steps of Fresnel- diffraction that are cascaded.
If the illumination is a plane wave, the field behind the first lens can be
written as:

E,(x,y) = ty(x,y)exp [—ik %}

We the let it propagate (z=2a)to the front surface of the second lens:
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Then we can repeat the above step to the second lens (f=a):
xl + 2
Eo(x,y) = 6o,y )exp [—ik Ty)] E_(,

Finally at the detector screen:
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4. A simplified spectrometer setup is illustrated as in Figure C. The spectrometer
consists of a sinusoidal amplitude grating with complex amplitude transmission
function:

21
t(x) =ty +tysin <Tx>
The grating is placed at the plane z = 0 and illuminated by an off-axis plane
wave
E(x,z = 0) = Eyexp (ikxsinf)
propagating at angle 6 with respect to the optical axis z.
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Figure C. A grating spectrometer.

The diffracted light waves are transmitted through a lens L1 with focal length f,
and collected at the back focal plane for wavelength analysis. In all problems
below, let’s assume the grating is sufficiently large and paraxial approximation is
valid across the whole system.

A) With a coherent monochromatic illumination at wavelength A, derive an
expression for the Fresnel diffraction pattern right behind the grating, and
argue that the expression that you derived physically represents a coherent
superposition of three plane waves of different orientation.

Answer:

- The field directly behind the grating is simply the product of the illumination
field and the transmission function of the grating because spherical waves
emanating from each point on the backside of the object has not propagated
over any space yet.

Ei(x,y;z2=0) = Ejjjym (x, y)t(x,y)

i2r (27 (1)
= E, exp <T xsm@) <t0 + t; sin <T x>>



We can rewrite the sine in the transmission function using exponentials:

1 . .
sin(ax) = Ee“”‘ - ze‘l“x
Equation (1) then becomes:
L2 i 51 i2n'x(5in9+l) i2nx(5in9—l)
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This informs us that the diffraction pattern consists of three beams with incident
angles {9, (9 + j—\) , (9 - %)} (sinf = 0)

The intensity of the field behind the grating:
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B) Using geometric optics, determine the location of the resulting spots on the
back focal plane, neglecting for now the diffraction effect due to finite width D
of the lens. Use your result to show that the wavelength detection limit, AA, of

this spectrometer is inversely proportional to grating period A.
Answer:

- Using matrix method, we obtain:
S R A Iy | A TG & A [ )
Therefore, Xou=fn. for a;, = {9, (9 + j—\) , (9 - %)}
Xow = {£0.5 (0+3).7 (0 -3)}
ax _ iz, ordA = iédx
da A f

Where dx is approximately the pixel size of the CCD camera placed on the
screen.

C) (2.710 only) Now taking into account of the diffraction effect due to finite
width D of the lens, estimate the resulting spot width of the diffracted order at
the back focal plane at monochromatic wavelength A. Evaluate again the
minimum spectral resolution AA of the grating spectrometer.

Answer:

Under 1D approximation, the diffracted spot at back focal plane is
approximately:
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Combined with partb), we obtain: dA4 = + % dx > i/l%
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