
 
 
 

 
 

 
 

 
  

 

 

           

 
 

 
 

 

 

 

 
 

 
   

 
 

   

 

 
     

   

2.710 - Optics 	 Quiz #2 April 30, 2014 

Problem 1. Billet’s Split Lens 

Setup 

If the field UL(x) is placed against a lens with focal length f and pupil function P(x), the field 
Uf(X) on the X-axis placed a distance f behind the lens is given by Eq. (5-14) in Goodman 
(modified to be 1D and I have reinserted the constant phase factor due to propagation over f in 
the z direction): 

 k 2 exp[ jkf ]exp j X  
 2 f 	  k 

U f ( X ) 	 UL (x)P x exp j xX dx Eq. 1
jf   f  

Part (a) 

Lens L (focal length f) is being illuminated by a spherical wave originating at location z = -f. 
Therefore, the field UL(x) incident on L is (using the paraxial approximation): 

 exp[ jk(z  f )]  x 2 
U L (x)  E(x, z  0) E0	 exp jk j(z  f ) 2(z  f )	   z0 

exp[ jkf ]  x 2 
U L (x)  E0 exp jk jf  2 f  

The lens is partially obstructed by a block of width (W). Therefore, the field pattern Uoutput(X) at 
the CCD detector can be viewed as follows.  Let U∞(X) be the field pattern that would result if 
the lens L was of infinite extent (with no obstructing block). Meanwhile, let UW(X) be the field 
pattern that would result if the lens L had finite extent W (again, with no obstructing block). 
UW(X) is essentially the field pattern blocked by the opaque block.  Thus, by linearity, Uoutput(X) 
will be UW(X) subtracted from U∞(X): 

U output (X ) U ( X ) UW ( X ) Eq. 2 

We can use Eq. 1 to calculate U∞(X) and UW(X) individually. UL(x) will be the same for each 
calculation. However, the pupil function P(x) will differ as follows: 

P (x) 1	 Lens with infinite (∞) extent 

 x PW (x)  rect	  Lens with finite extent W 
W  
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 



xX dx 

To calculate U∞(X), we plug in UL(x) and P∞(x) into Eq. 1: 
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As expected for a spherical wave originating from the front focal point of a lens, U∞(X) is a plane 
wave. To calculate UW(X), we plug in UL(x) and PW(x) into Eq. 1: 
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If the first exponential inside the integral is sufficiently constant (i.e., = 1) over the interval of the 
rect function (i.e., analogous to the Fraunhofer condition f > 2W2/λ), then it can be neglected: 
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To find the field pattern Uoutput(X) at the CCD detector, we plug U∞(X) and UW(X) into Eq. 2: 
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Parts (b) and (c) 

In the expression for Uoutput(X), all three terms have the form of a spherical wave.  Thus, 
Uoutput(X) essentially represents the coherent superposition of three spherical waves as follows: 

 1st term: a plane wave, equivalent to a diverging spherical wave originating at (x, z) = (0, 
-∞), i.e., on-axis at infinity (to the left) 

 2nd term: a diverging spherical wave originating at (x, z) = (-W/2, 0), i.e., the bottom 
edge of the opaque block, with a phase factor and a 1/X attenuation factor 

 3rd term: a diverging spherical wave originating at (x, z) = (+W/2, 0), i.e., the top edge of 
the opaque block, with a phase factor and a 1/X attenuation factor 

For each pair of waves, bright and dark fringes will occur when the phase difference (δ) between 
the pair is a multiple m and (m+0.5) of 2π, respectively: 

	 1st and 2nd waves (Plane & Spherical): bright fringes occur at Xm with increasing 
separation with m 

2	 2k  W  W 
2 	 W W

2m        X   X  2fm  12 2 1     m2 f 4 2	 4 2   	  

	 1st and 3rd waves  (Plane & Spherical): bright fringes occur at Xm with increasing 
separation with m 

2	 2k  W  W 
2 	 W W

2m        X   X  2fm  13 3 1     m2 f	  4  2   4 2	  

	 2nd and 3rd waves  (Spherical & Spherical): bright fringes occur at Xm with constant 
separation with m (as in Young’s double slit experiment with slit separation W) 

k  W 
2 

 W 
2 	 fm

2m       X     X    X 23 2 3 	  m2 f	  2   2   W	  

The total irradiance I on the CCD detector will be the aggregate of these fringe patterns, 
weighted by the irradiances (I1, I2, and I3) of each wave. Note that I2 and I3 decrease with 
increasing X, due to the 1/X2 attenuation factor. 
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Parts (d) 

If the illumination were moved off axis by a distance of x0, then the field UL(x, y) incident on the 
lens L would become: 

exp[ jkf ]  (x  x0 )2 
U L (x)  E0 exp jk jf 2 f  

According to the Shift Theorem, U∞(X) (from Part a) would become: 

exp jk2 f   k 
U  ( X )  E0 exp  j Xx 

jf f 

 f 0 

 

UW(X) (from Part a) would become (plugging PW(x) and the new UL(x) into Eq. 1): 

 k 2  exp jk2 f exp j X   2
 2 f  exp[ jkf ]  (x  x0 )   x   k 

U ( X )  E exp jk rect exp  j xX dxW  0    jf  jf  2 f  W   f  

 k 2  exp jk2 f exp j X   2 2
 2 f   x   xx   x   x   k 

UW ( X )  
2 

E0 exp jk exp jk 0 
exp jk 0 

rect exp j xX dx
f   2 f   f   2 f  W   f  

 k 2 2  exp jk2 f exp j ( X  x0 )  2
 2 f   x   x   k 

UW (X )  
2 

E0 exp jk rect exp j x( X  x0 )dx
f   2 f  W   f  

Once again, if the first exponential inside the integral is sufficiently constant (i.e., = 1) over the 
interval of the rect function (i.e., analogous to the Fraunhofer condition f > 2W2/λ), then it can be 
neglected as follows: 

 k 2 2  exp jk2 f exp j ( X  x0 )
 2 f    x UW ( X )  

2 
E0 F rect f  W  f ( X  x0 ) / fX 

 k 2 2  exp jk2 f exp j ( X  x0 )
 2 f   W 

UW ( X )  
2 

E0Wsinc ( X  x0 )f f  
 k 2 2   W 

 exp jk2 f exp j ( X  x0 ) sin ( X  x0 ) 2 f f   UW ( X )  
2 

E0Wf W ( X  x0 )
f 
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To find the field pattern Uoutput(X) at the CCD detector, we plug U∞(X) and UW(X) into Eq. 2: 
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The field Uoutput(X) is still a coherent superposition of three spherical waves: 







1st term: a plane wave propagating at angle –x0/f, equivalent to a diverging spherical 
wave originating off-axis at infinity (to the left) 
2nd term: a diverging spherical wave originating at (x, z) = (-W/2, 0), i.e., the bottom 
edge of the opaque block, with a phase factor and a 1/(X+x0) attenuation factor 
3rd term: a diverging spherical wave originating at (x, z) = (+W/2, 0), i.e., the top edge of 
the opaque block, with a phase factor and a 1/(X+x0) attenuation factor 
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Relative to Part (a), the Uoutput(X) here has changed as follows: 

	 1st term: this term is still a plane wave, but is now propagating at an angle of -x0/f 
	 2nd term: this term is still a diverging spherical wave originating at (x, z) = (-W/2, 0), but 

now has an additional phase factor of exp[jkWx0/2f] and a 1/(X+x0) attenuation factor 
(instead of just 1/X) 

	 3rd term: this term is still a diverging spherical wave originating at (x, z) = (+W/2, 0), but 
now has an additional phase factor of exp[-jkWx0/2f] and a 1/(X+x0) attenuation factor 
(instead of just 1/X) 

For each pair of waves, bright and dark fringes will occur when the phase difference (δ) between 
the pair is a multiple m and (m+0.5) of 2π, respectively: 

 1st and 2nd waves: bright fringes occur at Xm with increasing separation with m 

2k  W  W 
2  

2m      x 2   X   Wx  2Xx 	 212 2 1 0	 0 02 f	  4  2   W W	   Xm  2fm    x0 
2	 4 2k  W  W 

2  
2m    X  x0   

2 f	  4  2  	  

 1st and 3rd waves: bright fringes occur at Xm with increasing separation with m 

2k  2 W  W 
2 	 W 2 W

2m  13  3 1  x0    X   Wx0  2Xx0   Xm  2fm    x0
2 f	  4  2   4 2 

 2nd and 3rd waves: bright fringes occur at Xm with constant separation with m 

 2 2 k	  W   W  fm
2m       X     X    2Wx  X  23 2 3 	 0  m x02 f	  2   2   W 

Thus, relative to Part (a), the bright (and dark) fringes on the CCD detector will be shifted by a 
distance of -x0, i.e. in the opposite direction of the source shift.  The attenuation on I2 and I3 will 
also be shifted by -x0, due to the 1/(X+x0)2 attenuation factor (instead of just 1/X2 in Part a). 
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2.710 - Optics Quiz #2 April 30, 2014 

Appendix to Problem 1 

2f WMy answers above were contingent on the assumption that > 2 /λ, which allowed for easy 
U Xcalculation of ( ), i.e., the field pattern block by the opaque block. To be more clear, I willW

now show what would happen if I did not make that assumption. 

2f W U X U XWithout assuming > 2 /λ ( ) does not change but ( ) must be recalculated. PluggingL W, 
Eq. 1, tP X U X( ) and the original ( ) into he first exponential inside the integral cannot beW L

 



Part (a) 

neglected now: 

exp exp 

xX dx 
 

exp exp 

 

 

exp exp 







k 2
 

jk f j X

 2
 





 

 
 

22 f 
 k










x x
U X
 E
 jk j(
 )

 
rectexp exp











W 0f 2
 f W
 f2
 

k 2
 

jk f j X

 2
 





 



 

2 


 

2 f 
 
 









x x
U X
 E0 F jk(
 )

 rectexp







W f 2
 f W
2
 
/f X fx 

k 2
 

jk f j X

 2
 





 



 

2 


 

2 f 
 
 


 




 











x x
U X
 E0 F jk F
(
 )

 
 rectexp







W f 2
 f W
2
 
X / f  fx 

k 2
 
exp 

jk f 

 



jk f j X

 2
 exp 

2 







2 f 
exp  2
U X
 E0 j f j ff Wsinc(Wf(
 )

  
 )
W X xf f X / fx 

k 2
 
 


 



 




 



 





 







exp exp 

exp sinc 

Note that we are left with a convolution of a converging spherical wave with a sinc, rather than a 
sinc by itself (as in my Part (a) previously). To find the new field pattern Uoutput(X) at the CCD 
detector, we plug U∞(X) and UW(X) into Eq. 2: 

exp jk2 f 
exp sinc 

j X
2
 





 



 

2 f k W

 
 
 



2 X
U X
 E0W j X
(
 )

 
 








W 
f f2

jf f 


 


j

k 
X 2


 










exp





 



 

2 f k1
 
 
 W
 
 



2Uoutput X E
 E0W j(
 )
 X
 X

 
 
 








0 
j f f2

 
f f f f 



 

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Part (b) and (c) 

Without assuming f > 2W2/λ, the expression for Uoutput(X) can no longer be viewed as a 
superposition of three spherical waves. The first time is still a plane wave, i.e., a plane wave 
originating at infinity. However, the second term is now the product of a diverging spherical 
wave and the convolution of a converging spherical wave with a sinc. It is no longer fruitful to 
expand the sinc into complex exponentials in hope of creating two spherical waves (as in my 
Part (a) previously). Instead, Uoutput(X) is the superposition of a plane wave (as before) and the 
Fresnel diffraction pattern of a rectangular aperture with plane wave incidence (not two spherical 
waves). 

Part (d 

Despite the changes to Parts a, b, and c, the answer here does not change. If the illumination 
U Xwere moved off axis by a distance of , then ( ) would still shift a distance ofx –x0 0output . 

exp 
k 2
 

 2jk f j X
2
 
 (
 
 )
xexp 







02 f k
 
U∞(X) can be written as: U
 (
 X
 )

 2E
 exp0 
 j (
 X

x )







02 f
jf f 

 k 2  

 


exp exp 

sinc 

By observation, both of these terms are simply shifted versions (plus some phase change) of the 
x0 = 0 case. Thus, the combined Uoutput(X) will also be shifted. 

2jk f j X2 (  )x





0 

 



 

UW(X) can be written as: 2 f  k  W 
 


2UW X E0W j X X( )   (  ) x0exp



 f f 2jf f 
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2.710 - Optics Quiz #2 April 30, 2014 

Problem 2. 4F Imaging System 

Setup 

In a 4F imaging system, the primary fields of interest are: 

 Uinput(x, y): the field pattern at the x-y input plane 
 Upupil(X, Y): the field pattern incident on the X-Y pupil plane 
 U’pupil(X, Y): the field pattern immediately behind the X-Y pupil plane 
 Uoutput(x’, y’): the field pattern at the x’-y’ output plane 

The field pattern Uinput(x, y) is simply the input image (to be specified in Parts a, b, and c). If 
field pattern Uinput(x, y) is placed a distance d = f in front of L1 with focal length f and pupil 
function P(X, Y) = 1 (i.e., neglecting the finite extent of L1), the field pattern Upupil(X, Y) on the 
X-Y pupil plane placed a distance f behind L1 is given by Eq. (5-19) in Goodman (Note: I have 
reinserted the constant phase factor due to propagation over 2f in the z direction): 

jk 2 f  e  k 
U pupil ( X ,Y )    U input (x, y)exp j (xX  xY )dxdy

jf f   
jk 2 fe

U ( X ,Y )  FU (x, y) f X / fxpupil input 
f y Y / fjf 

jk 2 fe  X Y 

U pupil ( X ,Y )  Û 

input  , 
 jf  f f 
 

Thus, Upupil(X, Y) is simply the Fourier transform of the input field. Meanwhile, the pupil plane 
has a mask with amplitude transmission function t(X, Y).  If Upupil(X, Y) is incident on the pupil 
plane, then the field pattern U’pupil(X, Y) immediately behind the pupil plane is the product of 
Upupil(X, Y) and t(X, Y): 

U pupil (X ,Y ) U pupil ( X ,Y )t( X ,Y ) 

If field pattern U’pupil(X, Y) is placed a distance d = f in front of L2 with focal length f and pupil 
function P(X, Y) = 1 (i.e., neglecting the finite extent of L2), the field pattern Uoutput(x’, y’) on the 
x’-y’ outuput plane placed a distance f behind L2 is given Eq. (5-19) in Goodman (Note: I have 
reinserted the constant phase factor due to propagation over 2f in the z direction): 

jk 2 f  e  k 
Uoutput (x' , y' )  U pupil ( X ,Y )exp  j (x' X  y'Y ) dXdY    fj f     
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2.710 - Optics 	 Quiz #2 April 30, 2014 

jk 2 f	  e	  k 
U output (x' , y' )  U pupil ( X ,Y )t( X ,Y ) exp  j (x' X  y'Y ) dXdY  	   jf	  f  

jk 4 f  e  X Y   k 
U output (x' , y' )  

2   Û 
input  , t( X ,Y ) exp j (x' X  y'Y )dXdY 

j2 f   f f   f  

jk 4 fe   X Y   
Eq. 1Uoutput (x' , y' )  

2 2 
F Û 

input  , t( X ,Y )
j	 f f f f x '/ fX   

f  y '/ fY 

jk 4 fe   X Y 
Uoutput (x' , y' )  

2 2 
F Û 

input  ,  Ft(X ,Y ) 
j	 f f f f  x ' / fX   

f  y ' / fY 

jk 4 fe 2 2U (x' , y' )   f U  ff ,ff  t̂ ( f , f ) f  x ' / foutput 2 2 input X Y X Y X
f  y ' / fj	 f Y 

jk 4 fe	  x' y' 
U (x' , y' )  U  x' ,y' t̂  , 	 Eq. 2output	 inputj	  f f  

jk 4 fe
U (x' , y' )  U  x' , y' PSF x' , y'output	 inputj 

Thus, the output field Uoutput(x’, y’) can be calculated in two equivalent ways (whichever is more 
convenient for the given input field): 

	 Eq. 1: Uoutput(x’, y’) is the Fourier transform of the product of the Fourier transform 

Û 
input ( X / f ,Y / f ) of the input image and the amplitude transmission function  t(X, Y) 

of the mask. 
	 Eq. 2: Uoutput(x’, y’) is the convolution of the inverted input image Uinput(-x’, -y’) and the 

Fourier transform t̂ (x' / f , y' / f ) of the mask’s amplitude transmission function ((i.e., 
the point spread function PSF(x’, y’)). 

In either case, the intensity pattern can then be calculated as follows: 

2 
Eq. 3I ( x' , y ' )  U output ( x' , y ' )output 
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Part (a) 

In this case, the output field Uoutput(x’, y’) is most easily found using Eq. 1. If the input plane is 
illuminated by a coherent plane wave, the input field Uinput(x, y) is a constant and its Fourier 

transform Û ( f , f ) is a δ function:input X Y 

Uinput (x, y) 
1  Û input (
 Y )

F
1 
 (
f f f f y )
,
 ,
X x 

Meanwhile, the pupil plane’s mask is a rectangular grid of squares, specifically a a x b (Y-width 
by X-height) rectangle of (Λ – d) x (Λ – d) squares repeating every Λ in each direction. 
Therefore, t(X, Y) is the convolution of the square with a comb function bounded by a rectangle: 

X
 Y
 Y
 X




rect



Y 

a 




comb 

Note the grid has a transparent square at the center, such that t(0, 0) = 1. 

Plugging Û 
input ( f X , fY ) and t(X, Y) into Eq. 1 




































t(X ,Y )

 
rect rect 





 X

comb rect
d d b 
  
 
 
 

2 

jk 4 f 


 


 



X Y
 
 



e 

 

ˆF UU
 t( X ,Y( ' , ' )

 )
x y ,
inputoutput 2 
f 
j f f 
 

f 
f 

f 
 

x ' /
/ 

X
f 'yY 

2 

jk 4 f 




 




 


 



X Y
 
 



e
U
 F
 t( X ,Y( ' , ' )

 )
x y ,
output 2 
f 
fj f 

 
f 
f 

f 
 

x ' /
/

X
f 'yY 

jk 4 f 

2



 




 


 



X Y
 
 

 

e 

j 
U
 F
( ' , ' )

 t(0,0)x y ,
output 2 
f 
ff 

 
f 
f 

f 
 

x ' /
/

X
f 'yY 

jk 4 f 




 




 


 



X Y
 
 



e
U
 

2 

2 

F( ' , ' )

 since t(0,0) 
1
x y ,
output j 2 

jk 4 fe 

2 
f 
f f 
 

f 
f 

f 
 

x ' /
/ 

X
f 'yY 

2U
 f(x' , y' ) 
 
 

f 
f 

f 
 

x ' /
/

output j 2 

jk 4 fe 

2 Xf f 'yY 

2Uoutput ( ' , ' ) 
 fx y
j 2 

jk 4 fe 

2f 

Uoutput (x' , y' ) 

j 
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2.710 - Optics Quiz #2 April 30, 2014 

By Eq. 3, the output intensity pattern Ioutput(x’, y’) is: 

I (x' , y ' )  U ( x' , y ' ) 
2 
 1output output 

Putting the results together: 

jk 4 fe
Uoutput (x' , y' )  I output ( x' , y ' )  1

j 

Thus, the output field Uoutput(x’, y’) is a plane wave (with some phase delay) and the output 
intensity pattern  Ioutput(x’, y’) is a constant. This result is easily explained.  The input field is a 
plane wave, i.e., with only a DC component. Because the mask is transparent at the point (X, Y) 
= (0, 0) (via the center square), the DC component of the input is passed by the mask.  Therefore, 
the entire input is preserved and a plane wave appears again at the output.  

Below, I have plotted the intensity pattern (generated in Matlab), which is simply a constant 
background.

 I(x’, y’) 
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Part (b) 

In this case, the output field Uoutput(x’, y’) is most easily found using Eq. 2. If a coherent point 
source is placed at the origin of the input plane, the input field Uinput(x, y) is a δ function. 

U input ( x, y )   ( x, y ) 

The Fourier transform t̂ ( f X , fY ) of the mask t(X, Y) can be calculated as follows: 

t̂ ( fX , fY )  Ft(X ,Y ) 
  X   Y   X  Y   X  Y t̂ ( fX , fY )  F rect rect  comb comb rect rect  
    d     d         b   a  

  X   Y    X  Y    X  Y  t̂ ( fX , fY )  F rect rect F comb comb F rect rect 
    d     d           b   a  

2 2t̂ ( fX , fY )  (  d ) sinc(  d ) fX sinc(  d ) fY   combf X combfY absincbfX sincafY  
2 2      

t̂ ( fX , fY )  ab (  d ) sinc(  d ) fX sinc(  d ) fY     (f X m)(fY  n) sincbfX sincafY  
m n   

2 2     m   n   
t̂ ( fX , fY )  ab (  d ) sinc(  d ) fX sinc(  d ) fY      f X    fY   sincbfX sincafY  

m n        
   m 2 2    n t̂ ( fX , fY )  ab (  d ) sinc(  d ) fX sinc(  d ) fY    sincb fX  sinca fY  

m n         

2 2 
    m    n t̂ ( fX , fY )  ab (  d ) sinc(  d ) fX sinc(  d ) fY    sincb fX  sinca fY  

m n         

    m    n t̂ ( f X , fY )  sinc(  d ) f X sinc(  d ) fY    sincb f X  sinca fY  
m n         

where the constant factor abΛ2(Λ - d)2 has been dropped for simplicity in the last step above. 
Thus, t̂ ( f X , fY ) is a grid of skinny 2D sinc functions modulated by a wider 2D sinc function 
envelope. 

Plugging Uinput(x, y) and t̂ ( f X , fY ) into Eq. 2: 

jk 4 fe  x' y' 
U (x' , y' )  U  x' , y' t̂  , output inputj  f f  

jk 4 fe  x' y' 
U (x' , y' )    x' , y' t̂  , output j  f f  

Page 14 of 17 



 
 
 

 
 

 
   

 

                   

                                                               

        

 
 
 

 

 
 

 

 

                                                      

 

2.710 - Optics Quiz #2 April 30, 2014 

jk 4 fe  x' y' 
U (x' , y' )  t̂  , output j  f f  

jk 4 f    e (  d )  (  d )   x' m   y' n 
Uoutput (x' , y' )  sinc x' sinc y'     sincb  sinca  j  f   f  m  n   f     f   

jk 4 fe (  d )  (  d )     b  f   b  f Uoutput (x' , y' )  sinc x' sinc y'     sinc  x' msinc  y' nj  f   f  m  n f    f    

Plugging in Λ = 10 μm, d = 2 μm, a = 5mm, b = 3 mm, λ = 0.5 μm, and f = 10 cm: 

jk 4 fe  8μm   8μm 
Uoutput (x' , y' )  sinc x' sinc y'  j 0.5μm 10cm  0.5μm 10cm  

   3mm  0.5μm 10cm   5mm  0.5μm 10cm   sinc  x' msinc  y' n 
m  n  0.5μm 10cm  10μm  0.5μm 10cm  10μm  

jk 4 fe  8μm   8μm 
Uoutput (x' , y' )  sinc x' sinc y'  j 0.5μm 100mm  0.5μm 100mm 
 

   
3000μm  0.5μm 100mm  5000μm  0.5μm 100mm   sinc  x' msinc  y' n 
m n 0.5μm 100mm  10μm  0.5μm 100mm  10μm  

jk 4 fe -1 -1U (x' , y' )  sinc0.16mm  x'   y' sinc 0.16mm output j 
  

-1 -1 sinc60mm  x'5mm msinc100mm  y'5mm n 
m n 

Thus, the output field Uoutput(x’, y’) is a grid of skinny 2D sinc functions separated by 5 mm in 
each direction and modulated by a wider 2D sinc function envelope. Each skinny sinc function 
has a main lobe with a width of Δx’ = 2 / 60 mm-1 = 0.033 mm in the (vertical) x’-direction and 
Δy’ = 2 / 100mm-1 = 0.02 mm in the (horizontal) y’-direction.  The wider sinc function envelope 
has a main lobe with a width of Δx’ = Δy’ = 2 / 0.16 mm-1 = 12.5 mm. 

The output intensity pattern Ioutput(x’, y’) can be calculated by Eq. 3. Since each sinc function is 
reasonably far from all neighboring sinc functions relative to their widths (5 mm > 0.033 mm), 
let’s assume for simplicity that there is negligible overlap among the sinc functions in the 
intensity calculation: 

2 -1 2 -1I (x' , y' )  sinc 0.16mm  x'sinc 0.16mm  y'output 

  
2 -1 2 -1  sinc 60mm  x'5mm msinc 100mm  y'5mm n 

m  n  
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2.710 - Optics Quiz #2 April 30, 2014 

jk 4 f  e
U (x' , y' )  sinc0.16x'sinc 0.16y' sinc60x'5msinc 100y'5noutput
 j m n
 

  
2 2 2 2I (x' , y' )  sinc 0.16x'sinc 0.16y' sinc 60x'5msinc 100y'5noutput
 

m n
 

where x’ and y’ are in units of millimeters (mm).  Because the input field was a point source, the 
output field Uoutput(x’, y’) and intensity Ioutput(x’, y’) here are equivalent to the coherent and 
incoherent PSF(x’, y’), respectively, of this 4F imaging system. 

Below, I have plotted the intensity pattern (generated in Matlab) on a log10 scale, which makes it 
easy to see the grid of sinc functions repeating every 5 mm in each direction.  For more clarity, 
the bottom figures show the horizontal (@ x’ = 0) and vertical (@ y’ = 0) cross sections of the 
intensity pattern. In the “zoomed out” figure, one can easily see the amplitude of the skinny sinc 
functions decreasing outward from the center, due to the wider sinc envelope.  In the “zoomed 
in” figure, the vertical cross section is broader than the horizontal cross section because the mask 
is wider than it is tall, i.e., a > b.

      log10[I(x’, y’)] 

Cross Sections          Cross Sections (Zoomed into Central Sinc) 
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2.710 - Optics Quiz #2 April 30, 2014 

Part (c) 

In this case, the output field Uoutput(x’, y’) is most easily found using Eq. 2. If the transparent 
stamp of Tim the beaver is illuminated by a coherent plane wave, the input field Uinput(x, y) is a 
equivalent to the (amplitude transmission of the) stamp itself: 

U input ( x, y )  Tim ( x, y ) 

Plugging Uinput(x, y) and t̂ ( f X , fY ) (calculated in Part b) into Eq. 2: 

jk 4 f  e  
U (x' , y' )  Tim x' , y' sinc0.16x'sinc0.16 y'  sinc60x'5msinc100y'5noutput  j  m  n   

2
I (x' , y' )  U (x' , y' )output output 

where x’ and y’ are in units of millimeters (mm).  The output field Uoutput(x’, y’) is the 
convolution of the Tim stamp Tim(x’, y’) and the coherent PSF. The result is a grid of Tim 
stamps repeating every 5 mm in each direction and modulated by a sinc function envelope.  Each 
Tim stamp is blurry due to convolution with a low-pass filter, i.e., the skinny sinc function 
repeated in each direction in the PSF. 

Below, I have plotted the intensity pattern (generated in Matlab).  The left figure is plotted on a 
linear scale.  On this scale, only the central Tim is clearly visible, due to the sinc envelope 
making the neighboring Tims considerably darker.  For more clarity, the right figure is plotted on 
a log10 scale.  On this scale, the grid of Tims, repeating every 5 mm in each direction, is clearly 
visible. 

I(x’, y’)  log10[I(x’, y’]) 
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